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Abstract 

Background:  Enhancers play a fundamental role in orchestrating cell state and development. Although several 
methods have been developed to identify enhancers, linking them to their target genes is still an open problem. 
Several theories have been proposed on the functional mechanisms of enhancers, which triggered the development 
of various methods to infer promoter–enhancer interactions (PEIs). The advancement of high-throughput techniques 
describing the three-dimensional organization of the chromatin, paved the way to pinpoint long-range PEIs. Here we 
investigated whether including PEIs in computational models for the prediction of gene expression improves perfor-
mance and interpretability.

Results:  We have extended our TEPIC framework to include DNA contacts deduced from chromatin conforma-
tion capture experiments and compared various methods to determine PEIs using predictive modelling of gene 
expression from chromatin accessibility data and predicted transcription factor (TF) motif data. We designed a novel 
machine learning approach that allows the prioritization of TFs binding to distal loop and promoter regions with 
respect to their importance for gene expression regulation. Our analysis revealed a set of core TFs that are part of 
enhancer–promoter loops involving YY1 in different cell lines.

Conclusion:  We present a novel approach that can be used to prioritize TFs involved in distal and promoter-proximal 
regulatory events by integrating chromatin accessibility, conformation, and gene expression data. We show that the 
integration of chromatin conformation data can improve gene expression prediction and aids model interpretability.

Keywords:  Machine learning, Chromatin accessibility, DNase1-seq, Chromatin conformation, Gene regulation, HiC, 
HiChIP, Gene expression prediction
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Introduction
Understanding the processes involved in gene regula-
tion is an important endeavour in computational biology. 
Key players in gene regulation are transcription factors 
(TFs), DNA binding proteins that are essential in regu-
lating transcriptional processes. They are important in 

establishing and maintaining cellular identity and their 
dysfunction is related to several diseases [1].

TFs bind to promoters of genes, which are in close 
proximity to their transcription start site (TSS) and to 
enhancers, regulatory regions that can be several thou-
sand base pairs away from the regulated gene [2]. Since 
enhancers have been described for the first time in 1981 
by Banerji et al. [3], numerous studies shed light on their 
functional role.

For example, enhancers were shown to be essential in 
cell differentiation [4]. Also, it has been reported that 
mutations occurring in enhancer regions, can not only 
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lead to changes in gene expression [5, 6], but can also 
increase the probability to contract certain diseases, 
for instance Hirschsprung’s disease [7]. These effects 
are likely to be caused by an altered binding of TFs due 
to SNPs occurring in enhancer sequences [2, 8, 9]. To 
understand the function of enhancers, a crucial step after 
identification of putative enhancer regions is to link them 
to their target genes.

Recently, considerable progress has been made in iden-
tifying putative enhancer regions: In the past decade, 
many epigenetic data sets have been generated in con-
sortia like ENCODE [10], Blueprint [11] and Roadmap 
[12]. Histone Modifications, especially H3K27ac and 
H3K4me1, have been used in unsupervised computa-
tional approaches, such as CHROMHMM [13], EPICSEG 
[14], or REPTILE [15] to highlight putative enhancer 
regions genome-wide.

Also (semi-)supervised methods, e.g. ENHANCER 
[16], ENHANCERDBN [17], or DECRES [18], relying on 
experimentally validated enhancer regions used as train-
ing data have been proposed. Furthermore, it was shown 
that DNase-hypersensitive sites (DHSs) are good candi-
date sites for TF-binding [19, 20] and that DNase1-seq 
signal is also predictive for gene expression [20, 21]. Thus 
DHS sites, which are not located nearby promoters can 
be considered as candidate enhancer regions. However, 
it is still a fundamental biological question how enhanc-
ers interact with their potentially distantly located target 
genes. The most prevalent hypothesis is that enhancers 
are brought to close proximity to their target genes by 
chromosomal re-organization and DNA-looping. This 
hypothesis is known as the looping model. It is oppos-
ing the so-called scanning model, which states that an 
enhancer is usually regulating only its nearest active pro-
moter [22]. Experimental evidence could be found for 
both models [2], hence it is likely that both mechanisms 
are occurring in nature.

Inspired by these models, several experimental and 
computational methods have been proposed to link 
enhancers to their target genes. Following the scan-
ning model, two approaches are common in the field: 
(1) window-based linkage and (2) nearest gene linkage. 
In the window-based approach, a gene is associated 
with regulatory regions that are located within a defined 
genomic region around this gene [23, 24]. Alternatively, 
in the nearest gene approach, an enhancer is only associ-
ated with its nearest gene [25]. To reduce false-positive 
assignments, the nearest gene linkage is also often cou-
pled to a correlation test between epigenetic signals in 
the enhancer and the expression of the candidate gene 
[26].

While approaches like JEME [27], FOCS [28] or 
STITCHIT [29] offer the linkage of regulatory elements 

on a gene-specific level, these methods require the avail-
ability of large data sets for the considered species and 
tissues, which is generally not the case. In practice, the 
established window and nearest gene-based linkage para-
digms are still being used [25]. However, the drawback 
of those approaches is that they do not include long-
range enhancer–gene interactions, as proposed by the 
looping model. These have been experimentally deter-
mined using, for example fluorescence in  situ hybridi-
zation (FISH), via the identification of enhancer RNAs 
(eRNAs) and their correlation to target genes, or via 
3C-based high-throughput methods, for instance HiC, 
Capture-HiC, and HiChIP [30]. Especially the develop-
ment of such high-throughput methods to analyse the 
3D organization of the genome enables us to determine 
genome-wide DNA contacts [31]. Detailed analyses of 
individual genes, e.g. the β-globin gene showed that mul-
tiple contacts occur simultaneously at one genomic loci 
and also overlap with DHSs [32]. It was shown that loops 
are established by Cohesin, Mediator complexes and 
CTCF, which is known to act as an insulator protein. By 
performing genome-wide chromatin conformation cap-
ture experiments, it is possible to segment the genome in 
multiple topological associating domains (TADs). Also, 
it is known that there is more intra-TAD interaction 
among genes and enhancers than between TADs [33]. To 
mine the variety of data types that inform on chromatin 
structure and to establish promoter–enhancer interac-
tions (PEIs) following the looping model, a wealth of tools 
have been published. The JEME method by Cao et al. for 
instance is a two-level learning algorithm utilizing linear 
regression and random forest (RF) models that not only 
links candidate enhancers, derived from HMs, eRNAs 
and/or sites of ac JEMEcessible chromatin, to their tar-
get genes, it also predicts sample-specific activity of the 
enhancers. In this process,  is able to consider data on 
long-range interactions, e.g. ChIA-PET data [27]. A dif-
ferent approach has been taken by He et al. [34], in which 
a gold standard set of PEIs derived from ChIA-PET data 
are used to train classifiers to predict enhancer–promoter 
pairs. The classifiers consider various HMs, TF motif 
scores as well as sequence conservation. The approach 
taken by TARGETFINDER , suggested by Whalen et  al., 
is yet another way to tackle the PEI inference problem 
[35]. They construct a gold standard set of active PEIs by 
combining chromatin state segmentations for ENCODE 
and Roadmap data sets with several HiC data sets. Using 
several genomic features such as DNA methylation, 
HMs, CAGE data, and binding information of proteins 
(e.g. Cohesin), they learn ensemble models that predict 
PEI interactions across cell-types. A general overview on 
available methods is provided in Yao et al. [2].
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Despite the availability of PEI data derived from chro-
matin conformation data, it has not yet been integrated 
into computational methods inferring gene expression 
using experimentally or computationally determined 
TF binding events. Because of the tissue specificity of 
enhancers, including PEIs might augment the interpreta-
bility of such models and thereby lead to novel biological 
insights. Here, as a follow-up to our previous investiga-
tions [24, 36], we introduce an extension of the TEPIC 
framework to account for PEIs inferred from chromatin 
conformation capture experiments or computational 
approaches. In other words, we do not propose a novel 
method to establish PEIs, but investigate whether PEIs 
inferred from chromatin conformation capture data can 
be meaningfully utilized in gene expression modelling. 
The usage of gene expression prediction models is estab-
lished in literature, especially to highlight key cell-type-
specific regulatory factors [24, 37, 38]. Generally, various 
sets of features have been proposed, e.g. TF ChIP-seq 
data [23], chromatin accessibility and predicted TF bind-
ing sites (TFBS) [25, 39–41], and the abundance of HMs 
[42]. Aside from traditional machine learning approaches 
such as linear regression or support vector regression, 
also deep learning models have been proposed in litera-
ture [43].

As a baseline, we illustrate using gene expression pre-
diction that both window and nearest gene annotation 
approaches are not well suited to account for regula-
tory activity  across the entire  genome. Our new TEPIC 
module extends a promoter-centric window by includ-
ing far away genomic loci deduced from HiC and HiChIP 
data. While both HiC and HiChIP interactions improve 
gene expression prediction models, we observe a greater 
improvement with HiChIP data, an effect for which we 
outline several reasons. Furthermore, we illustrate that a 
distinct consideration of TF binding events in promoter 
and potentially far away enhancer regions allows for a 
fine-grained interpretation and analysis of transcriptional 
regulation through TFs.

Materials and methods
Data and preprocessing
In this study, we used gene expression quantified from 
RNA-seq data and DNase1-seq data for the cell lines 
K562, GM12878, IMR90, HUVEC, HCT116, Jurkat, and 
HeLa. All data are obtained from ENCODE, correspond-
ing accession numbers are provided in Additional file 1: 
Table  S1. Except for Jurkat, where gene expression esti-
mates were quantified with SALMON (version 0.8.2) 
using default parameters, gene expression estimates were 
directly downloaded from ENCODE. DHS sites have 
been identified using the peak caller JAMM [44] (version 
1.0.7.2), with default parameters configured. All peaks 

passing the automated filtering of JAMM are considered. 
Additional file 1: Table S2 lists the number of identified 
peaks per cell line.

Furthermore, we obtained HiC data for K562, 
GM12878, IMR90, HUVEC, and HeLa from Rao et  al. 
[31]. Specifically, we used the loop files as provided by the 
Lieberman-Aiden group, which were extracted from raw 
HiC contact matrices using the HiCCUPS algorithm [31]. 
In case of the HiC data sets used in this work the loops 
are of 5 kb , 10 kb , and 25 kb resolution, respectively. A 
loop is defined as a pair of genomic loci that are in arbi-
trary genomic distance from each but, at the same time, 
are in close spatial proximity. In the following, the HiC 
resolution called All refers to loops of an arbitrary resolu-
tion, as this corresponds to a more conservative approach 
where we collect all available loops. For reasons of sim-
plicity, inter-chromosomal loops, which resemble a less 
frequent type of contacts, are excluded. Additional file 1: 
Table  S3 provides an overview on the HiC data consid-
ered in this work.

Additionally, we use processed HiChIP data (Addi-
tional file 1: Table S4) in which the TF YY1 was targeted 
in Jurkat, HCT116, and K562 cells generated by Wein-
traub et  al. [45]. The data has a resolution of 5 kb . All 
data were obtained for the hg19 reference genome using 
gene annotation version 19 from GENCODE [46]. Each 
HiChIP interaction is assigned the number of paired-end 
tags (PET) that connect the two interacting loci (PET 
count). Furthermore, Weintraub et al. computed a signifi-
cance value for each putative interaction (q-value) using a 
semi-Bayesian two-component mixture model [45].

We obtained chromatin state segmentations, contain-
ing 15 states generated with ChromHMM [13], for K562, 
GM12878, IMR90, HUVEC, and HeLa from ENCODE. 
As there was no ChromHMM annotation available for 
Jurkat, we approximate this using a Roadmap Chrom-
HMM track for CD4+ CD25− Th Primary Cells 
(E043). We focus on the promoter states TssA(1) and 
TssAFlnk(2), as well as on the enhancer states EnhG(6), 
Enh(7), BivFlnk(11), and EnhBiv(12). ENCODE accession 
numbers are provided in Additional file 1: Table S1.

Aggregation of promoter–enhancer interactions (PEIs) 
to the gene level
We apply three different strategies to aggregate PEIs 
from DNase1-seq data: (1) a window-based annotation, 
(2) a nearest gene-based linkage and (3) a window-based 
annotation that incorporates HiC or HiChIP data. An 
illustration of the PEI linkage methods is shown in Fig. 1.

We use the following notation throughout the article: 
considering a DHS site d ∈ D , where D is the set of all DHS 
sites, we denote the length of d with l(d) and the DNase1-
seq signal in d with s(d). We aggregate neighbouring 
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genomic positions, which are assigned the same chromatin 
state from ChromHMM into one segment m, representing 
a distinct ChromHMM state. The set of all considered seg-
ments is denoted with M.

Here, we compute three different features for each gene 
g: (1) total peak length plg , (2) summarized peak count pcg , 
and (3) aggregated peak signal psg [36]:

(1)plg =
∑

d∈Dg

l(d)e
−

dist(d,g)
d0 ,

(2)pcg =
∑

d∈Dg

e
−

dist(d,g)
d0 ,

The genomic distance of d to a specific gene g is denoted 
with dist(d, g). It is measured from the centre of the peak 
to the most 5′-TSS of g. Using an exponential decay for-
mulation proposed by Ouyang et  al. [23], each peak is 
weighted by the distance to its linked gene. The param-
eter d0 is controlling the effect of the decay and is set to 
5000. The set Dg denotes the DHSs that are assigned to 
gene g. Details on the assignment are provided in the 
next section.

Window‑based linkage
For each gene g, we consider a window w of size |w| cen-
tred at the most 5′-TSS of g. We denote all DNase peaks 

(3)psg =
∑

d∈Dg

s(d)e
−

dist(d,g)
d0 .

a

b

c

Fig. 1  Assignment of DNase1-seq peaks to genes. The different setups are illustrated for two genes g1 and g2. The colour code of peaks and the 
border colour of segments indicate to which gene a peak is assigned. Peaks with a striped filling are not assigned to any gene. a In a window-based 
annotation, peaks are linked to a gene if they are located within a window w centred at the 5′ transcription start site (TSS) of a gene of interest. 
Dg1,w1 denotes the set of all DHSs overlapping window w1 centred around the promoter of gene g1. b Peaks are linked to the nearest gene, defining 
nearest as the gene with the closest TSS in linear genomic distance. Here, Dg1,n refers to the set of all DHSs linked to gene g1 following the nearest 
gene approach. c Using HiC or HiChIP, secondary windows vi covering the distal regions linked to the TSS are considered in addition to the TSS 
window. For gene g1, two additional windows, v1 and v2, are considered, yielding the additional peak sets Dg1,v1 and Dg1,v2.
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d, and the ChromHMM regions m that overlap w with 
Dg ,w and Mg ,w , respectively. Thus, we set Dg = Dg ,w in 
Eqs. 1–3 to compute scores based on DNase1-seq data.

Additionally, we define an intersection operation 
∩H between Dg ,w and Mg ,w such that only d ∈ Dg ,w 
are retained that overlap by at least one 1bp with any 
m ∈ Mg ,w . Formally, that is:

where d ∩m indicates the overlap in genomic space of 
peak d and segment m.

We apply the ∩H intersection operation to Dg ,w thereby 
obtaining D′

g ,w:

Consequently, we use Dg = D′
g ,w in Eqs.  1–3 and com-

pute scores as described above. The window-based anno-
tation is depicted in the upper part of Fig. 1.

Nearest gene linkage
In this linkage paradigm, a peak (d) or segment (m) is 
exclusively associated with its closest gene. Notably this 
implies that a peak or segment cannot be associated with 
more than one gene. Following this paradigm, we obtain 
Dg ,n , Mg ,n and set Dg = Dg ,n in Eqs. (1)–(3). As above, in 
Eqs. 4, 5, we intersect Dg ,n with Mg ,n using the ∩H opera-
tor and obtain D′

g ,n . The nearest gene annotation is visu-
alized in the middle of Fig. 1.

HiC and HiChIP‑based annotation
In addition to the window w centred at the TSS of gene 
g, we apply separate windows v ∈ Vg inferred from con-
tacts of HiC or HiChIP experiments within one chromo-
some (Eqs.  6–8). The set Vg refers to all distant regions 
considered for gene g. We associate a chromatin contact 
to gene g if one of the two loop regions is located within 
a promoter search window of size rbp around the TSS of 
gene g. We refer to this search window as loop window 
(LW). The set of all DHSs intersecting a window v ∈ Vg 
is denoted with Dg ,Vg , and are included in the score com-
putation. Because the chromatin conformation capture 
experiment suggests a direct interaction of a potentially 
far away region v with gene g, we do not apply an expo-
nential decay to peak signals of that region. However, we 
did test whether applying the exponential decay in the 
distal regions would be beneficial for model performance 
and found that it is indeed not the case for both HiC 
and HiChIP experiments, since all features were shrunk 
towards zero (data not shown). Note that, in contrast to 
the promoter-centric window w, there might be more 
than one window v for a distinct gene g.

(4)
Dg ,w ∩H Mg ,w = {d|d ∈ Dg ,w ∧ ∃m ∈ Mg ,w : d ∩m �= ∅},

(5)D
′
g ,w = Dg ,w ∩H Mg ,w .

In addition to the promoter-centric features, we com-
pute peak length plg∗ , peak count pcg∗ , and peak signal 
psg∗ in distal DHSs linked to gene g according to:

The HiC/HiChIP-based annotation is explained in the 
bottom part of Fig. 1.

Finally, we integrate the ChromHMM information with 
the window-based annotation. To this end, we intersect 
Dg ,Vg with Mg ,Vg and obtain D′

g ,Vg
 to reduce the number 

of regions associated with g from the distal regions v ∈ Vg 
(Additional file 1: Figure S1).

Computation of TF‑gene scores using TEPIC
In addition to the peak-based features plg , pcg , psg , plg∗ , 
pcg∗ , psg∗ , we estimate TF binding affinities using TEPIC 
[24]. As introduced previously in Schmidt et al. [36], we 
compute TF affinities ap,t for TF t in peak p using TRAP 
and aggregate the TF affinities to TF-gene scores ag ,t 
according to

where Pg is the set of all DHSs assigned to gene g, reflect-
ing the window-based, or nearest gene assignment. The 
variable |p| denotes the length of DHS p, |mt | denotes the 
length of the Position-Specific Energy Matrix (PSEM) mt 
representing the binding preference of TF t, dist(p, g) is 
the distance between peak p and gene g, and d0 is a con-
stant set to 5 kb [23]. Here, we used 726 PSEMs for Homo 
sapiens, obtained from JASPAR [47], HOCOMOCO [48] 
and the Kellis ENCODE motif database [49], which are 
included in the TEPIC 2.0 repository [39].

As a baseline to be used in this study, we consider two 
promoter-centric windows to compute TF-gene scores: 
(1) TF-gene scores aggregating TF affinities in a promoter 
window of size 3 kb Eq. 9; (2) TF-gene scores aggregat-
ing TF affinities in an extended promoter window of size 
50  kb including the exponential decay formulation of 
Eq. 10. To utilize the information offered by the chroma-
tin conformation capture data, we additionally compute 

(6)
plg∗ =

∑

d∈Dg ,Vg

l(d),

(7)pcg∗ = |Dg ,Vg |,

(8)
psg∗ =

∑

d∈Dg ,Vg

s(d).

(9)ag ,t =
∑

p∈Pg

ap,t

|p| − |mt | + 1
and

(10)ag ,t =
∑

p∈Pg

ap,t

|p| − |mt | + 1
e
−

dist(p,g)
d0 ,
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TF-gene scores ag ,t∗ solely based on DHSs overlapping 
the LWs:

Generation of a null model for chromatin conformation data
To assess the significance of the included chromatin 
conformation data, we generated null models based on 
random sets of chromatin interactions that follow the 
distance distribution of the real data. Given a chromatin 
conformation capture data set C with |C| chromatin inter-
actions and a distribution of distances of interacting sites 
D(C) , we generate 10 random data sets Ri , with i ∈ [1, 10] 
such that |C| = |Ri| , ∀i and D(Ri) = D(C) , ∀i . The random 
data sets are generated using the bedtools shuffle 
command [50]. Peak length plg∗ , peak count pcg∗ , peak 
signal psg∗ , and TFBS prediction ag ,t∗ values are com-
puted for each random set Ri . In addition to the random 
chromatin interactions, we generated 10 random permu-
tations of the gene annotation file to generate a base line 
for the extended feature space models (see below), also 
using bedtools shuffle. Random chromatin confor-
mation data sets cannot be used to test the reliability of 
the extended feature space models, as all TF promoter 
features as well as the predicted TF binding sites that are 

(11)ag ,t∗ =
∑

p∈Dg ,Vg

ap,t

|p| − |mt | + 1
.

associated to the loop site overlapping the loop window 
would not be affected by the randomization.

Gene expression learning
Here, we briefly describe the machine learning tech-
niques used in this study. An overview on the different 
feature setups is provided in Additional file 1: Figure S2, 
as well as in Table 1. The learning paradigm is sketched in 
Additional file 1: Figure S3.

Details on the linear model
Similar to a previous approach described in [24], we use 
linear regression with elastic net penalty implemented 
in the glmnet R-package [51] to predict gene expres-
sion. The elastic net combines two regularization terms, 
namely the Ridge (L2) and the Lasso (L1) penalty:

Here, the feature coefficient vector is represented by β , 
the estimated coefficients are denoted by β̂ , X refers to 
the feature matrix, y refers to the response vector and the 
parameter � determines the total amount of shrinkage. 
Both the input matrix X and the response vector y, con-
taining gene expression estimates, are log-transformed, 
with a pseudo-count of 1, centred and normalized. The 

(12)

β̂ = arg min
β

||y− Xβ||2 + �[α||β||2 + (1− α)||β||].

Table 1  Different combinations of features evaluated in this study

Name Considered peak features Considered TF features Annotation

Promoter: peaks Peak length plg Window

Peak count pcg Nearest gene

Peak signal psg ChromHMM

Promoter + HiC: peaks Peak length plg Window + HiC

Promoter + HiChIP: peaks Peak count pcg Window + HiChIP

Peak signal psg ChromHMM

Peak length plg∗

Peak count pcg∗

Peak signal psg∗

Promoter + HiC: C peaks Peak length plg + plg∗ Window + HiC

Promoter + HiChIP: C peaks Peak count pcg + pcg∗ Window + HiChIP

Peak signal psg + psg∗ ChromHMM

Promoter: peaks + TFs Peak length plg Affinities in promoter DHS ag,t Window

Peak count pcg ChromHMM

Peak signal psg
Promoter + HiChIP: peaks + TFs (EF) Peak length plg Affinities in promoter DHS ag,t Window + HiChIP

Peak count pcg Affinities in loop DHS ag,t∗ ChromHMM

Peak signal psg
Peak length plg∗

Peak count pcg∗

Peak signal psg∗
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parameter α , which is optimized in a grid search from 
0.0 to 1.0 with a step-size of 0.01, controls the trade-off 
between Ridge and Lasso penalty. Model performance 
is assessed on a hold-out test data set in a ten-fold outer 
Monte Carlo cross-validation procedure with 80% of the 
data randomly chosen to form the training data and 20% 
as test data. The � parameter is fitted in a six-fold inner 
cross-validation using the cv.glmnet function. We choose 
the � achieving the minimum cross-validated error, com-
puted as the average mean squared error (MSE) on the 
inner folds (lambda.min).

Details on the feature space
In this article, we build the feature matrix X in five differ-
ent ways, listed in Table 1 and depicted in an exemplary 
manner in Additional file 1: Figure S2. As a baseline, we 
use our previously introduced promoter-centric models 
considering DHS-based features ( plg , pcg , psg ) and TF-
gene scores ag ,t . We refer to those as Promoter: Peaks and 
Promoter: Peaks + TFs, respectively.

Initially, we extended the promoter-based models only 
with peak-based features derived for loop sites ( plg∗ , 
pcg∗ , psg∗ ), due to simplicity. We refer to the separate 
consideration of promoter and loop peak features as Pro-
moter + HiC/HiChIP: Peaks and to the combined consid-
eration as Promoter + HiC/HiChIP: C Peaks.

Finally, we construct a feature matrix that comprised 
all peak ( plg , pcg , psg,plg∗ , pcg∗ , psg∗ ) and all TF fea-
tures ( ag ,t , ag ,t∗ ). We refer to this distinct consideration 
of peak features and TF-gene scores for promoter DHS 
and enhancer DHS as the extended feature space (EF), 
as it expands the original feature space considerably and 
allows a more detailed interpretation of the models.

Computation of p‑values for TF features
To assess the significance of the features derived from 
the elastic net model in the extended feature space, we 
trained ordinary least squares (OLS) models for each cell 
line considering only TF and peak features that have been 
assigned a non-zero regression coefficient by the elastic 
net model. Using the F-test, a p-value is computed sepa-
rately for each feature.

Gene sets
For all models in this study, protein coding genes (gen-
code v19) are considered.

Implementation changes in TEPIC
We have extended the TEPIC framework by a novel mod-
ule that allows the integration of any matrix describ-
ing genome-wide chromatin contacts. The new module 
requires two inputs. Firstly, it requires a file with paired 
intervals (e.g. HiC or HiChIP loops) to be included in the 

annotation and secondly a parameter specifying the size 
of the loop window LW should be provided by the user. 
The LW is the area around a gene that is being screened 
for a potential chromatin contact. Accessible regions 
overlapping with a chromatin contact are not subject to 
the exponential decay. Furthermore, regions overlapping 
the promoter window as well as the LW are not counted 
twice. They are only considered for the promoter window 
to avoid redundancy. Details on the formatting of the 
required input file and on the novel parameters are pro-
vided in Additional file 1.

TF gene expression analysis
We generated a mapping of TF names to Ensemble 
GeneIDs using Biomart. To test whether TFs in a query 
set have a higher expression than expected, we sampled 
1000 TF sets of the size of the query set from the entire 
TF universe (without replacement). Whether the differ-
ence in the expression distributions is significant or not is 
assessed with a Wilcoxon test.

Network analysis
Protein–protein association (PPA) network analysis 
was conducted using the STRING database version 11 
[52]. We obtained the PPA network for TFs found in 
the extended feature space analysis using four evidences 
from STRING (Experiments, Textmining, Databases, 
Co-occurrence). The final network was obtained using 
an interaction confidence score of 0.4 (default) and show-
ing only proteins that are connected to at least one other 
protein (visualized in Fig. 6).

Results
In this work, we developed an extension of our TEPIC 
approach that aggregates regulatory events occurring in 
potentially distal regulatory sites to the gene level in a 
genome-wide fashion. Before we present the applicability 
and performance of this extension, we investigate com-
mon approaches that are widely applied in the commu-
nity to establish PEIs ad hoc and use this comparison as 
a baseline for our novel methodology. Furthermore, we 
briefly describe differences in the HiC and HiChIP data 
used in this study.

Local genomic architecture governs superiority of window 
or nearest gene‑based approaches
Previously, we have focused on window-based linkage 
approaches in TEPIC [24, 36]. Here, we have taken a 
broader scope and included the nearest gene assignment 
as well. Just like the window-based approaches, this is 
another common strategy, used for instance by Gonzales 
et  al. [25]. First we wanted to obtain a baseline, against 
which models considering chromatin conformation data 
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can be compared later. We contrasted the performance of 
linear regression models predicting gene expression from 
the DNase1-seq derived features: (i) peak length, (ii) peak 
count and (iii) peak signal for window-based ( Dg ,w ) and 
nearest gene linkage ( Dn ) for GM12878, HeLa, HUVEC, 
IMR90, and K562 cells. As shown in Fig. 2 and in Addi-
tional file  1: Figure S4a, 50 kb windows outperform 3 kb 
windows and compared to nearest gene approaches, the 
50 kb window leads to slightly better models for three 
out of five samples. In Additional file  1: Figure S4b the 
mean squared error (MSE) for 9000 randomly selected, 
individual genes is shown using the DNase1-seq model 
for HeLa. Contrasting gene-specific prediction errors 
allows us to illustrate by comprehensive case-examples 
the existence of genome architecture-specific advantages 
and disadvantages of the PEI linkage approaches.

For example, the MSE of RPL7A(ENSG00000148303) 
is nearly twice as high using the nearest gene than the 
window-based annotation. As shown in Additional file 1: 
Figure S5a there seems to be a bidirectional promoter for 
RPL7A and MED22. The model suggests that this cannot 
be adequately covered by the nearest gene approach. A 
different scenario is depicted in Additional file 1: Figure 
S5b for the gene HINT1(ENSG00000169567). This gene 
is located in a gene-sparse region surrounded by several 
DHS peaks, which seem to add a large portion of noise 
in the nearest gene approach. In contrast to that, for 
the gene APOA2(ENSG00000131096), the nearest gene 
approach leads to a better performance as it neglects, in 
contrast to the window-based model, several DHS sites 
that seem to be associated with TOMM40L instead of 

APOA2 (Additional file 1: Figure S5c). These genes, spe-
cifically RPL7A, HINT1, and APOA2, are highlighted in 
Additional file  1: Figure S4b. Overall, these results sug-
gest that neither the window based, nor the nearest gene 
annotation, generalize well across all genes. Still, the 50 
kb window-based approach tends to perform slightly bet-
ter on average.

Besides, we found that the minimum distance of a DHS 
to a gene is also cell-type specific and not homogeneous 
across different cell lines (Additional file 1: Figure S6).

Including ChromHMM states has diverse effects on model 
performance
To understand whether the performance of the models 
could be improved by a stricter selection of potential reg-
ulatory regions, we used promoter/enhancer states pre-
dicted with ChromHMM in GM12878, HeLa, HUVEC, 
IMR90, and K562, thereby reducing the set of considered 
DHSs ( D′

g ,w and D′
g ,n ). In Additional file 1: Figure S7 the 

results for the window and nearest gene annotation are 
contrasted. In general, the intersection of regulatory seg-
ments with DHSs ( D′ ) reduces model performance com-
pared to the D models. Only in case of HeLa, the nearest 
gene model does not lose performance.

This reduction in performance suggests that also rel-
evant DHSs are removed from consideration. To inves-
tigate this hypothesis, we compared the mean DHS 
confidence score of removed DHSs in the D′ models to 
the retained DHS (Additional file 1: Figure S8a). Oppos-
ing this hypothesis, we found that the confidence score 
for the retained peaks is higher for both window sizes 
and the nearest gene approach. Note that in case of the 
nearest gene annotation, the ChromHMM intersection 
represents a genome-wide filtering. Also, a large por-
tion of removed peaks are linked to Quiescent/Low, Weak 
Repressed Polycomb, and Weak transcription chroma-
tin states (Additional file 1: Figure S8b), which does not 
suggest that the removed regions have a regulatory role. 
Additionally, we observe that the average length of the 
considered DHSs tends to be shorter in D′ compared to 
D models (Additional file 1: Figure S9).

HiC resolution impacts the association of genes 
to long‑range chromatin interactions
Before learning models using HiC or HiChIP data, we 
performed a few statistical analyses to better under-
stand the characteristics of the chromatin conformation 
data. Compared to random regions, the real HiC data are 
enriched for DHS overlaps (Additional file 1: Figure S10). 
As expected, the enrichment reduces with a decreas-
ing (numerically higher) HiC resolution (Fig.  3a). This 
analysis suggests that the choice of HiC resolution will 
affect any downstream analysis relying on DHS sites. As 
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Fig. 2  The performance of gene expression prediction models 
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shown for various models using peak length, peak count, and peak 
signal within the gene promoter regions. Two different window 
sizes ( 3 kb , 50 kb ) and the nearest gene approach are compared. 
We observe that the 50 kb models outperform the 3 kb models. 
Considering the 50 kb models, there is a slight advantage of the 
window-based models over the nearest gene-based annotation
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exemplarily shown in Fig. 3c for a LW of 25 kb and a HiC 
resolution of 10 kb, there are between 1000–7000 genes 
associated with a chromatin contact. In Additional file 1: 
Figure S11, we depict additional combinations for search 
windows and HiC resolutions. Generally, we observe 
that the number of genes associated with a loop reduces 
with a more precise, i.e. numerically smaller, HiC resolu-
tion. The LW used to link a HiC loop to a gene also influ-
ences the number of mapped genes. As expected, with an 
increasing search window size around the gene promot-
ers, the number of genes that are linked to a loop is ris-
ing accordingly. Simultaneously the slope of the increase 
depends on the utilized HiC resolution. For example, as 
shown in Additional file  1: Figure S11, the increase in 
the number of genes is only marginal for the best reso-
lution (5 kb), while it is more than three times as strong 

for the lowest one (25  kb). Compared to HiC data, it is 
striking how many genome-wide interactions are deter-
mined in HiCHIP data (Fig. 3b). For instance, in case of 
K562, there are ≈ 10,000,000 chromatin interactions with 
a DHS in both loop sites, contrasted against ≈ 6000 sites 
deduced from HiC (Additional file 1: Figure S11), consid-
ering a resolution of 5 kb for both data sets. As shown in 
Additional file 1: Figure S12a, there are still several mag-
nitudes more HiChIP than HiC interactions, if a reduced 
HiChIP data set, filtered by q-Value or PET threshold, is 
considered.

We observe that almost all protein coding genes, fol-
lowing the hg19 reference annotation, are associated with 
a HiChIP contact (Fig. 3d). Upon a reduction of HiChIP 
contacts to those with a higher confidence, the number 
of affected genes stays above the levels of the HiC data 
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Fig. 3  a The observed over expected ratio for the overlap between DHSs with HiC regions is shown for different cell lines and different HiC 
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(Additional file 1: Figure S12b). As one might expect, the 
mean distance between HiChIP sites of one chromatin 
contact is decreasing with a more stringent threshold-
ing (Additional file  1: Figure S12c). Together with the 
count information from Additional file  1: Figure S12a, 
we note that the HiChIP data contains between 10,000 
and 100,000 interactions within a distance of 5 kb–10 kb 
between the interacting sites.

Effect of integrating HiC and HiChIP data on gene 
expression prediction
Due to the slight advantage of the window-based meth-
odology, we decided to augment it using chromatin 
conformation capture data. Specifically, we attempt to 
replace the 50 kb models with 3 kb models that addi-
tionally consider DHSs linked to a distinct gene by chro-
matin conformation capture data. We hypothesize that 
the chromatin conformation capture data can provide 
more precise information about gene-specific regulatory 
events than the simplified 50 kb window, by consider-
ing loop information on a gene-specific level. To better 
understand the spatial characteristics of the data at hand, 
the resolution of the analysed data and the effect of dif-
ferent window sizes, we augment both the 3 kb and the 
50 kb models with chromatin conformation data.

In addition to the promoter-centric models shown 
in Fig.  2, we trained linear models considering peak 
length, peak count, and peak signal of DHSs overlap-
ping HiC and HiChIP loci, respectively. We refer to 
those features as loop features. Figure 4 illustrates that 
including HiC and HiChIP data can be beneficial for 

model performance. For HiC data, depicted in Fig. 4a, 
we observe a slight improvement in model perfor-
mance, which is more pronounced in case of a 3 kb 
promoter window than with a 50 kb promoter window. 
However, for some of the cell lines the improvement is 
not significantly better than the promoter models.

As observed in our earlier studies [36], the 50 kb mod-
els outperform 3 kb models. Overall, our results indicate 
that a larger LW tends to be beneficial for model per-
formance. This is especially pronounced for GM12878, 
HUVEC, and IMR90 cells using a 3 kb promoter win-
dow. This observation is likely to be directly linked to 
the dependency between the loop window size LW and 
the number of genes assigned with at least one HiC con-
tact. Additionally, we assessed whether the gene expres-
sion models improve over the promoter models, due to 
the fact that more DHSs are included through looping 
regions. Therefore, we designed a control, by sampling 
random chromatin contacts of the same size as the real 
data (see “Materials and methods”). As shown in Addi-
tional file 1: Figure S13, the random models neither sig-
nificantly improve over the promoter nor the real HiC 
data, supporting the potential biological relevance for cell 
lines GM12878, HUVEC, and IMR90 (see Fig. 4a).

In case of HiChIP data, illustrated in Fig.  4b, we see 
a stronger improvement of model performance upon 
inclusion of the loop features. Here, models extending 
the 3 kb promoter window perform at least as good, or 
better than those extending the 50 kb promoter window. 
It is possible, that the higher number of relatively short 
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HiChIP interactions is responsible for this observation, 
which is in opposing to what we have seen with HiC data.

In addition, we analysed the performance of the HiChIP 
models in comparison to random interactions, similar 
as for HiC before. As shown in Additional file 1: Figure 
S14a, random models neither significantly improve over 
the promoter, nor the real HiChIP data, supporting the 
biological relevance of the HiChIP data as well. Moreo-
ver, as shown in Additional file 1: Figure S15, only a sepa-
rate consideration of promoter and loop features leads to 
an improvement in model performance.

To better understand the relation between model per-
formance and HiChIP interaction count, we reran the 
HiChIP models using different PET cut-offs. As depicted 
in Additional file  1: Figure S16a, model performance 
constantly drops with a stricter cut-off in 3 kb promoter 
windows for HCT and Jurkat. In K562 the drop is less 
after a threshold of two, similar to what we observe for 
all samples using a 50 kb promoter window. As expected, 
we notice that the number of putative HiChIP interac-
tions that can be considered in the model, that is HiChIP 
contacts overlapping a DHS in both interacting loci, con-
stantly drops with a more stringent cut-off (Additional 
file  1: Figure S16b). Taken together, these results sug-
gest that several of the excluded interactions are already 
included in the 50 kb promoter models, avoiding a per-
formance drop. This is supported by the observation that 
the median distance of interacting sites is zero for larger 
PET thresholds (Additional file 1: Figure S16c). Secondly, 
it seems worthwhile to consider all suggested HiChIP 
interactions in the model without imposing a PET (or 
q-value) cut-off as all interactions are required to achieve 
the best model performance.

Compared to promoter-only models, filtering DHS 
with ChromHMM can improve models that are consid-
ering loop features (Additional file 1: Figure S17).

We chose the 3 kb HiChIP annotation for further 
examination in an extended feature space approach using 
TF affinities, because these models achieved the best per-
formance with purely peak-based features. As described 
in the next section, we attempt to decipher the regulatory 
impact of TFs binding in promoters and enhancers sug-
gested by the chromatin conformation capture data.

Modelling of TF binding to distal regulatory elements
In our earlier works, we showed that models including 
TF affinities can be used to learn about the tissue-specific 
regulatory activity of TFs [24, 36] and can be extended 
to investigate regulation of differential gene expression, 
for example in Durek et  al. [37]. Therefore, we asked 
whether adding features for each TF would change the 
prediction performance. As shown in Fig.  5a, including 

TF affinities derived for DHSs around the promoter of 
genes, improves the performance of the linear models, 
compared to those models that are based solely on peak 
features.

Having the information about chromatin loops, we can 
not only consider TF affinities in the promoter, but also 
in distal sites determined with HiChIP data. We trained 
models using an extended feature space considering each 
TF separately for the promoter and aggregated over the 
distal loop windows, for the K562, HCT116, and the Jur-
kat cell line. The distinct inclusion of these features fur-
ther improves model performance (Fig.  5a, Additional 
file 1: Figure S18), suggesting that we can gain additional 
insights on the role of TFs by examining their regression 
coefficients. As for the peak-based models (Additional 
file  1: Figure S14a), the random control experiments 
do not improve over the promoter nor the real HiChIP 
models (Additional file 1: Figure S14b). The UpSet plot in 
Fig.  5b depicts the overlap between TFs that have been 
assigned a non-zero mean regression coefficient in a ten-
fold outer cross-validation procedure. The figure high-
lights that there are several factors occurring exclusively 
in promoter or loop regions, respectively.

Overall, we find the TFs ARNT::HIF1A, BHLHE41, 
CTCF, CTCFL, ETV5, ETV6, E2F8, GABPA, HINFP, 
HOXA5, INSM1, MEIS1, NKX2.8, NKX3.1, NRF1, REST, 
RUNX1, SRF, SRY, STAT1::STAT2, TCF7L2, TEAD2, 
TFDP1, THAP1, YY1, YY2, and ZNF384 to be selected 
as a feature in at least two of the three considered cell 
lines as a promoter feature. The TFs DUX4, E2F4, 
EGR4, GATA1::TAL1, GRHL1, KLF13, NRF1, NR2F1, 
PHOX2A, SOX9, SP2, YY1 are in at least two out of three 
cell lines as a loop feature.

Recalling that the HiChIP data were performed with 
an antibody targeting YY1 and the fact that YY1 binding 
sites are over represented in human core promoters [53], 
the prediction of YY1 as a common promoter feature is 
a validation of our computational approach. The appear-
ance of YY2 may be due to the fact that the C-terminal 
binding domains of YY1 and YY2 are highly conserved. 
Indeed, ChIP-seq derived binding peaks of YY2 con-
tained the YY1 motif at peak centres, indicating that YY2 
binds similar regions and that there is an overlap of genes 
regulated by both TFs [54, 55].

Similar to YY1, also NRF1 has been shown to be essen-
tial for transcriptional regulation at the core promoter of 
several genes [56, 57]. The TF TFDP1 has been shown to 
bind to the promoter elements of genes that are related to 
the cell cyle [58]. Regarding the TFs commonly identified 
in loop regions, we find, for instance, that E2F4 has been 
suggested previously to bind to enhancer regions [59]. 
Binding sites of NR2F1 have been shown to coincide with 
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high levels of the established enhancer marks P300 and 
H3K27ac [60].

Taking into account that the HiChIP data suggest a spa-
tial proximity between the TFs bound to the promoter 
regions to those TFs bound to the loop regions, we inves-
tigated protein–protein associations using the STRING 
database [52]. We selected the 40 TFs that occur in our 
models in at least two of the three cell lines, in either 
promoter or loop regions. The resulting network shows 
the 32 out of 40 TFs that are associated with at least one 
other TF according to STRING (see Fig. 6 and “Materi-
als and methods”). The analysis reveals that there are dif-
ferent modules among the selected TFs, where YY1 is 
placed in the centre, with associations to other hubs in 

the network, such as CTCF, STAT1, GATA1, and E2F4. 
The network suggests the formation of protein–protein 
complexes, or other types of protein associations, estab-
lishing links between enhancer and promoter regions.

In addition to this general analysis, we investigated the 
top 20 TFs ranked by their mean, absolute, regression 
coefficient across the ten-fold outer cross-validation, per 
cell line (Fig. 5c). For comparability and to simplify model 
interpretation, we scaled the regression coefficients by 
the maximum regression coefficient per sample.

For instance, HMGA1 is selected as a promoter feature 
in K562. This TF is known to act as an essential regula-
tor for the mediator complex and the basal transcription 
machinery [61]. Another TF is YY1, which is among the 

a b

c

Fig. 5  a Model performance assessed in terms of Spearman correlation on hold-out test data for models including TF-gene scores computed in 
the promoter and in the distal enhancers. Generally, including TF predictions improves model performance compared to considering only peak 
features. Significance is assessed using a Wilcoxon test using the promoter model as the reference group (****p < 0.0001 , **p < 0.01 , * p < 0.05 , 
ns : p ≥ 0.05 ). b UpSet plot showing the relationship between TFs with a non-zero regression coefficients inferred by the extended feature 
space models. c Ranking of the top 20 TFs by their absolute regression coefficients for each cell line. The colour code indicates the mean scaled 
regression-coefficient of the TFs computed in a ten-fold outer cross-validation
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top 20 TFs selected for K562 and Jurkat, supporting the 
validity of the ranking. On the loop sites, we find, for 
example JUND being among the top 20 factors in K562. 
This factor is known to support enhancer functions for 
instance in B cells and keratinocytes [62, 63]. MZF1, 
selected as a loop feature for both HCT116 and Jurkat, 
was previously associated with enhancer activity [64].

Interestingly, the knockdown of SP1 or KLF7, which 
are selected for K562 cells among the top loop features, 
has been shown to impact cellular differentiation and β
-globin production, respectively [65]. While several TFs, 
e.g. HMGA1, a chromatin re-modeller which is known to 
be highly active in cancer [66], have a positive regression 
coefficient, indicating an activatory role of those TFs, 
we see that several TFs are assigned a negative regres-
sion coefficient. Our results are further supported by lit-
erature evidence, suggesting that ASCL1 [67], CTCF(L) 
[68, 69], CUX2 [70], MECP2 [71], MZF1 [64], NFIX [72], 
REST [73], TCF7L2 [74], and TCF12 [75] do carry out a 
repressive function.

The potential regulatory role of the TFs highlighted 
in Figs.  5c and  6 is additionally supported by the 

observation that the top 50 TFs with a non-zero regres-
sion coefficient per cell line have higher gene expression 
values than randomly sampled TFs (Additional file 1: Fig-
ure S19). To further improve the faith in the relevance 
of those highlighted TFs, we computed their statistical 
significance using the F-test incorporated in OLS mod-
els (“Materials and methods”, Additional file 1: Table S5). 
The OLS model is based on all features with a non-zero 
regression coefficient determined by the elastic net and, 
despite its simplifying assumption of feature independ-
ence, supports the majority of the tested TFs. Overall, 
our analysis of the extended feature space thus revealed a 
set of TFs that are likely frequently involved in enhancer-
loop linkage involving YY1.

Discussion
Associating regulatory regions to genes is still subject to 
ongoing research. In this work, we compared established 
methods to construct PEIs and present an extension of 
our TEPIC approach to associate enhancers with genes 
using chromatin conformation capture data, exemplary 
using HiC and HiChIP data. We evaluated the different 

Fig. 6  Protein–protein association network obtained from the STRING database illustrating interactions among YY1 and TFs selected as a predictor 
in gene expression models for K562, Jurkat, and HCT116 in promoter and distal loop sites
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PEI linkage methods using predictive models of gene 
expression learned on DNase1-seq data.

Our results indicate that neither the widely used near-
est-gene linkage nor the window-based PEI models are 
optimal. We illustrate that both approaches have distinct 
advantages and drawbacks. For example, in the near-
est gene assignment, there is no common agreement, 
whether the TSS or transcription termination site (TTS) 
of a gene is used to calculate the genes’ distance to the 
putative enhancer. Also, in gene-dense regions, it is not 
obvious whether a peak should be uniquely assigned 
to only one or to multiple genes. Indeed, it was shown 
before that a distinct enhancer can influence the expres-
sion of various genes [76, 77]. On the other hand, the 
window-based linkage might generate many false-posi-
tive associations in gene-dense regions and likely misses 
distal enhancer regions, which in turn might be captured 
by the nearest gene approach in gene-sparse genomic 
loci. We have illustrated these points using multiple 
examples in Additional file 1: Figure S5. Notably, current 
research suggests that many enhancer–gene interactions 
are established only within TADs but only rarely across 
TAD borders [33]. This might argue in favour of window-
based approaches and suggests to include TAD bounda-
ries in nearest gene approaches to avoid assignments 
across TAD boundaries. It is of crucial importance for the 
field to understand the pros and cons of the assignment 
strategies, because they still form the basis for recent 
efforts trying to link enhancers to genes in multi-tissue 
scenarios [28]. Also, in settings were only few samples are 
available, a computational de novo assignment of regula-
tory regions to genes using correlation-based methods is 
not feasible. Approaches as proposed by Gonzales et al. 
[25], which iteratively reassign peaks to their presumable 
target gene, might also offer a remedy in such scenarios.

Our examination of the available HiC data suggests 
that the peak resolution has a strong impact on infer-
ring PEIs. We showed that both the number of genes 
as well as the number of overlapping DHS sites largely 
depends on the HiC resolution. Notably, with a higher, 
i.e. numerically smaller, HiC resolution the number of 
genes associated with HiC loops almost remains constant 
with an increasing search window size. While models 
considering HiC data did improve in their ability to pre-
dict gene expression, the improvement was only marginal 
compared to the 50 kb promoter model. This can be due 
to several reasons. One possibility might be that not all 
chromatin contacts are directly linked to transcriptional 
regulation and gene expression, as also suggested by Ray 
et  al. [78]. For instance, loops could be part of higher-
order structures and thereby indirectly influence cellular 
processes. This could be an explanation for the varying 
overlap of DHSs with HiC loops described in Fig. 5. It is 

likely that other methods, e.g. ChIA-PET, capture HiC 
[79], or HiChIP, which can enrich the sequencing librar-
ies for distinct regions such as promoters of interest, lead 
to more precise contact maps in terms of both resolu-
tion and signal-to-noise ratio. Leveraging these more 
fine-grained technologies for gene expression modelling 
seems to be an opportunity to improve the prediction 
performance and to enhance our understanding on the 
underlying regulatory processes.

To examine this hypothesis, we learned gene expres-
sion prediction models using recently generated HiChIP 
data. In contrast to the HiC data, we see a stronger 
improvement in model performance. Importantly, the 
rather tight 3 kb window focusing at the promoter aug-
mented with HiChIP contacts, outperformed all 50 kb 
model variants, suggesting that the interactions sug-
gested by the HiChIP experiments are indeed meaning-
ful and better than an average over all DHSs within 50 kb 
of the TSS. As depicted in Fig. 4, the number of HiChIP 
contacts is several magnitudes higher than the number 
of HiC contacts. We noted that many of the high-quality 
HiChIP contacts belong to smaller range contacts, sug-
gesting that HiChIP data also uncovers chromatin inter-
actions between a gene’s TSS and intragenic enhancers. 
This might explain why the augmented 3 kb models per-
form at least as good or better than the 50 kb models as 
intragenic interactions are likely to be modelled in the 
HiChIP data. In this work we anchor our analysis on the 
promoter of genes for two main reasons: first, Promoters 
have been reported to be enriched for DHSs, e.g. com-
pared to the gene-body or the TTS [80], suggesting that 
promoters are at the core of regulatory activity. Secondly, 
several HiC studies reported loop formation within a dis-
tinct gene, that is chromatin contacts between the TSS 
of gene x to intragenic positions of gene x up to its TTS, 
whereas loops from the TTS to other genomic locations 
have not been reported [81, 82].

A recent study by Furlong and co-workers might pro-
vide additional insights as to why the benefits of the chro-
matin interaction data, in particular HiC, showed limited 
improvement in performance. In Drosophila, it was 
shown that extensive rearrangements of chromatin in 
the three-dimensional space, which disrupted chromatin 
loops and changed TAD structures, did not lead to major 
gene expression changes [83]. These findings are coher-
ent with our results, indicating that not all long-range 
chromatin interactions may be involved in the direct reg-
ulation of gene expression.

In contrast to the promoter-only models, including 
ChromHMM state segmentations did improve the per-
formance of models considering HiC or HiChIP data, 
suggesting that both techniques lead to the inclusion of 
less relevant DHSs.
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Wrapping up all these aspects, we tried to further 
improve the HiChIP models by incorporating TF affini-
ties and extending the feature space of the model. This 
allowed a prioritization of inferred regulators in a pro-
moter and a (distal) enhancer-specific point of view. We 
have shown that models based on this feature design can 
be comprehensively interpreted and lead to biologically 
meaningful and reasonable results. It is important to 
keep in mind that the TF activity inferred by the linear 
model should be seen as a majority vote across all genes 
for one sample. Thus, factors that have been reported 
to have both activating and repressing functions, e.g. 
CTCF [68] will be assigned a coefficient that represents 
the major contribution of the TF to the entire regulatory 
system at hand. Furthermore, we note that the p-values 
inferred by the OLS model should be considered with 
caution as the correlation in the activity among different 
TFs is not adequately addressed. Therefore, the relevance 
of a feature might be underestimated. Nevertheless, the 
p-values can be seen as an additional layer of evidence for 
the importance of a TF.

To make our approach generally applicable for the 
research community and to scale-up with new experi-
mental technologies, we designed TEPIC s chromatin 
conformation extension to be able to integrate PEIs 
derived from any chromatin conformation capture tech-
nology. We believe that this extension together with the 
extended feature space annotation will be helpful to elu-
cidate regulatory processes at promoters and enhancers.

Conclusion
Overall, our study provides an unbiased comparison of 
prevalent PEI linkage strategies and shows that neither 
the established window-based PEI linkage nor the nearest 
gene linkage perform optimal. Further, we show that HiC 
and HiChIP data can both be used to integrate genome-
wide chromatin contacts into predictive gene expression 
models. Thereby, we can not only often improve model 
performance, but, using our extended feature space for-
mulation, enable users to obtain detailed insights into the 
promoter and enhancer-specific activity of TFs across 
distinct cell-types and tissues.
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