
Nakato et al. Epigenetics & Chromatin           (2019) 12:77  
https://doi.org/10.1186/s13072-019-0319-0

RESEARCH

Comprehensive epigenome characterization 
reveals diverse transcriptional regulation 
across human vascular endothelial cells
Ryuichiro Nakato1,2†  , Youichiro Wada2,3*†, Ryo Nakaki4, Genta Nagae2,4, Yuki Katou5, Shuichi Tsutsumi4, 
Natsu Nakajima1, Hiroshi Fukuhara6, Atsushi Iguchi7, Takahide Kohro8, Yasuharu Kanki2,3, 
Yutaka Saito2,9,10, Mika Kobayashi3, Akashi Izumi‑Taguchi3, Naoki Osato2,4, Kenji Tatsuno4, Asuka Kamio4, 
Yoko Hayashi‑Takanaka2,11, Hiromi Wada3,12, Shinzo Ohta12, Masanori Aikawa13, Hiroyuki Nakajima7, 
Masaki Nakamura6, Rebecca C. McGee14, Kyle W. Heppner14, Tatsuo Kawakatsu15, Michiru Genno15, 
Hiroshi Yanase15, Haruki Kume6, Takaaki Senbonmatsu16, Yukio Homma6, Shigeyuki Nishimura16, 
Toutai Mitsuyama2,9, Hiroyuki Aburatani2,4, Hiroshi Kimura2,11,17* and Katsuhiko Shirahige2,5*

Abstract 

Background:  Endothelial cells (ECs) make up the innermost layer throughout the entire vasculature. Their phe‑
notypes and physiological functions are initially regulated by developmental signals and extracellular stimuli. The 
underlying molecular mechanisms responsible for the diverse phenotypes of ECs from different organs are not well 
understood.

Results:  To characterize the transcriptomic and epigenomic landscape in the vascular system, we cataloged gene 
expression and active histone marks in nine types of human ECs (generating 148 genome-wide datasets) and carried 
out a comprehensive analysis with chromatin interaction data. We developed a robust procedure for comparative 
epigenome analysis that circumvents variations at the level of the individual and technical noise derived from sample 
preparation under various conditions. Through this approach, we identified 3765 EC-specific enhancers, some of 
which were associated with disease-associated genetic variations. We also identified various candidate marker genes 
for each EC type. We found that the nine EC types can be divided into two subgroups, corresponding to those with 
upper-body origins and lower-body origins, based on their epigenomic landscape. Epigenomic variations were highly 
correlated with gene expression patterns, but also provided unique information. Most of the deferentially expressed 
genes and enhancers were cooperatively enriched in more than one EC type, suggesting that the distinct combina‑
tions of multiple genes play key roles in the diverse phenotypes across EC types. Notably, many homeobox genes 
were differentially expressed across EC types, and their expression was correlated with the relative position of each 
organ in the body. This reflects the developmental origins of ECs and their roles in angiogenesis, vasculogenesis and 
wound healing.
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Background
The vasculature pervades almost all body tissues. It con-
sists of arteries, veins and interconnecting capillaries and 
has numerous essential roles in physiology and disease 
[1]. Endothelial cells (ECs), which make up the innermost 
blood vessel lining of the body, express diverse pheno-
types that affect their morphology, physiological function 
and gene expression patterns in response to the extracel-
lular environment, including the oxygen concentration, 
blood pressure and physiological stress. In the kidney, 
for example, the vascular bed plays a role in the filtra-
tion of blood; in the brain, however, the vascular archi-
tecture protects the central nervous system from toxins 
and other components of the blood [2]. Endothelial het-
erogeneity is dependent both on the function of each 
organ and on the developmental lineage of different EC 
populations, which result in adaptation to the vascular 
microenvironment.

It is widely recognized that certain specific vessels 
are susceptible to pathological changes, which include 
those related to atherosclerosis and inflammation [3]. 
Atherosclerosis, which occurs in the muscular and elas-
tic arteries, is a progressive disease characterized by the 
accumulation of macrophages, and this process is initi-
ated by the expression of cell adhesion molecules, such 
as P-selectin. In mice, the expression level of P-selectin 
is higher in the lung and mesentery vesicles compared 
with the heart, brain, stomach and muscle [4]. In clini-
cal practice, the thoracic, radial and gastroepiploic arter-
ies are used for coronary bypass grafts because these 
arteries have no tendency toward atherosclerosis and 
hence are therapeutically advantageous in patients with 
coronary artery plaques [5]. In addition, the long-lasting 
results from coronary bypass graft surgery indicate that 
vessels transplanted to a new environment differ in their 
outcome based on their origin as an artery or vein [6, 
7]. Based on these observations, the elucidation of the 
molecular mechanisms underlying EC-type variability is 
critically important for understanding the development 
of vascular and circulation systems.

Several animal models have been developed to reveal 
the enhancer elements that function during the differ-
entiation of various tissues, including ECs [8, 9]. With 
respect to human ECs, analyses relying on cells in short-
term culture may represent good models [10, 11]. Organ-
specific phenotypes at the microvascular level are most 

likely due to the intimate contact between ECs and the 
parenchymal cells of a particular organ—i.e., there is a 
substantial environmental effect [2, 6]. In contrast, for 
macrovascular ECs, a large subset of their characteris-
tics is most likely derived from their epigenetic status, 
which would have been set during development and can 
be retained even when the cells are isolated in culture. 
Increasing evidence supports the idea that certain site-
specific characteristics are epigenetically regulated [12, 
13]. For example, a previous study of four types of mouse 
ECs in culture demonstrated that site-specific epigenetic 
modifications play an important role in differential gene 
expression [14]. Moreover, our recent reports elucidated 
that there are different histone modifications present in 
the same genomic loci, such as GATA6, in human umbili-
cal vein endothelial cells (HUVECs) and human der-
mal microvascular endothelial cells (HMVECs) [10, 11]. 
Despite the discovery of these important insights, we still 
lack a systematic understanding of how the epigenomic 
landscape contributes to EC phenotype and heterogene-
ity. Therefore, there is a great demand for a comprehen-
sive epigenomic catalog of the various EC types.

As a part of the International Human Epigenome Con-
sortium (IHEC) project [15], we collected chromatin 
immunoprecipitation followed by sequencing (ChIP-
seq) data for the active histone modifications trimethyl-
ated H3 at Lys4 (H3K4me3) and acetylated H3 at Lys27 
(H3K27ac) in EC DNA from nine different vascular cell 
types, eight of which were derived from macrovascular 
ones (both arteries and veins), from multiple donors. We 
implemented large-scale comparative ChIP-seq analy-
sis of these datasets and collected gene expression data 
to understand how the diverse phenotypes of ECs are 
regulated by key genes. All datasets used in this study 
are publicly available and are summarized on our website 
(https​://rnaka​to.githu​b.io/Human​Endot​helia​lEpig​enome​
/).

Results
Reference epigenome generation across EC types
To establish an epigenetic catalog for different EC 
types, we generated a total of 491 genome-wide data-
sets, consisting of 424 histone modification ChIP-seq 
and 67 paired-end RNA sequencing (RNA-seq) data-
sets, encompassing a total of 22.3 billion sequenced 
reads. ECs were maintained as primary cultures with 

Conclusions:  This comprehensive analysis of epigenome characterization of EC types reveals diverse transcriptional 
regulation across human vascular systems. These datasets provide a valuable resource for understanding the vascular 
system and associated diseases.
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a physiological concentration of vascular endothelial 
growth factor (VEGF) and a minimal number of pas-
sages (fewer than six). We generated genome-wide nor-
malized coverage tracks and peaks for ChIP-seq data 
and estimated normalized gene expression values for 
RNA-seq data.

In this study, we selected a subset of 33 EC samples 
(131 datasets) as a representative set comprising nine 
types of vessels from the human body (Fig. 1a):

•	 Human aortic endothelial cells (HAoECs),
•	 Human coronary artery endothelial cells (HCoAECs),
•	 Human endocardial cells (HENDCs),
•	 Human pulmonary artery endothelial cells 

(HPAECs),
•	 Human umbilical vein endothelial cells (HUVECs),
•	 Human umbilical artery endothelial cells (HUAECs),
•	 Human common carotid artery endothelial cells 

(HCCaECs),
•	 Human renal artery endothelial cells (HRAECs), and
•	 Human great saphenous vein endothelial cells (HGS-

VECs).

Details about the 33 EC samples are presented in Addi-
tional file 1: Table S1.

Among the structures lined by these nine EC types, a 
group of two aortic, six common carotid and three coro-
nary arteries is known as the “systemic arteries” and har-
bors arterial blood with 100  mmHg of oxygen tension 
and blood pressure in a range from 140 to 60  mmHg. 
Data sets for each cell type comprise samples from mul-
tiple donors, all of which achieved high-quality values as 
evaluated below. Here, we focused on two histone modi-
fications, H3K4me3 and H3K27ac (Fig.  1b), which are 
the key markers of active promoters and enhancers [16]. 
Because both H3K4me3 and H3K27ac exhibit strong, 
sharp peaks with ChIP-seq analysis, they are more suit-
able for identifying shared and/or unique features across 
EC cell types as compared with other histone modifica-
tions that show broad peaks, such as H3K9me3.

Quality validation
To evaluate the quality of obtained ChIP-seq data, we 
computed a variety of quality control measures (Addi-
tional file 2: Table S2), including the number of uniquely 

Fig. 1  Summary of the cell types and histone modifications analyzed in this project. a Schematic illustration of the cardiovascular system, nine 
EC types and 33 individual samples (indicated by the prefix “EC”) used in this paper. The yellow and green boxes indicate EC types from the upper 
body and lower body, respectively. b Workflow to identify the reference sites for ECs. The active promoter and enhancer sites of each sample 
were identified. For each cell type, the shared sites across all samples were extracted as the reference sites. These were integrated into a single set 
of reference sites for ECs, which was used for the downstream analyses. ChIA-PET data were utilized to identify the corresponding gene for the 
reference enhancer sites. c Correlation between observed and expected (from ChIP-seq analysis using linear regression model) gene expression 
data. Left: example scatterplot of observed and expected gene expression level for genes (data from EC13). Right: Pearson correlation heatmap for 
representative samples of nine cell types and IMR90 cells (as a negative control)
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mapped reads, library complexity (the fraction of nonre-
dundant reads), GC content of mapped reads, genome 
coverage (the fraction of overlapped genomic areas with 
at least one mapped read), the number of peaks, signal-
to-noise ratio (S/N) based on the normalized strand 
coefficient [17], read-distribution bias measured by back-
ground uniformity [17], inter-sample correlation for 
each EC type and genome-wide correlation of read den-
sity across all-by-all pairs (Additional file  3: Figure S1). 
In addition, the peak distribution around several known 
positive/negative marker genes was visually inspected. 
Low-quality datasets were not used for further analyses.

To further validate the reliability of our data, we evalu-
ated the consistency between the obtained peaks from 
ChIP-seq and the gene expression values from corre-
sponding RNA-seq data. We applied a bivariate regres-
sion model [18] to estimate the expression level of all 
genes based on H3K4me3 and H3K27ac peaks and then 
calculated the Pearson correlation between the esti-
mated and the observed expression levels from ChIP-seq 
and RNA-seq, respectively. We used data derived from 
IMR90 fibroblasts analyzed with the same antibodies 
as a negative control, and we confirmed that peak dis-
tribution of the ChIP-seq data was highly correlated 
with corresponding RNA-seq data for ECs, but not with 
IMR90 data (Fig.  1c, Additional file  3: Figure S2 for the 
full matrix). Therefore, our ChIP-seq data are likely to 
represent the histone modification states of ECs for 
annotation.

Identification of active promoter and enhancer sites
We used H3K4me3 and H3K27ac ChIP-seq peaks to 
define “active promoter (H3K4me3 and H3K27ac)” and 
“enhancer (H3K27ac only)” sites for each sample (Fig. 1b, 
left). Then we assembled them and defined the com-
mon sites among all samples of a given EC type as the 
reference sites, to avoid differences specific to individu-
als. Finally, the reference sites of all nine EC types were 
merged into a single reference set for ECs (Fig. 1b, right). 
We identified 9121 active promoter sites (peak width, 
2840.8  bp on average) and 23,202 enhancer sites (peak 
width, 1799.4  bp on average). The averaged peak width 
became relatively wide due to the merging of multiple 
contiguous sites.

We compared the distribution of the reference sites 
with gene annotation information. As expected, active 
promoter sites were enriched in the transcription start 
sites (TSSs) of genes, whereas enhancer sites were more 
frequently dispersed in introns and intergenic regions 
(Additional file  3: Figure S3). Among the enhancers, 
15,625 (67.3%) were distally located (more than 10 kbp 
away from the nearest TSSs). The number of enhancer 
sites was more varied among the nine EC types, whereas 
the number of active promoter sites was comparable 
across the EC types (Fig.  2a, upper panel). The large 
number of HUAEC enhancer sites is possibly due to the 
small number of samples (two) and the relatively small 
difference between the individuals (both samples were 
from newborns). We also evaluated the shared ratio of 
promoter and enhancer sites across all EC types (Fig. 2a, 
lower panel). We found that nearly 80% of the active pro-
moter sites were shared among multiple EC types. In 
contrast, 57.7% of the enhancers were specific to up to 
two EC types, suggesting that their more diverse distri-
bution across EC types relative to active promoter sites 
contributes to the EC type-specific regulatory activity. 
These observations are consistent with previous studies 
for other cell lines [16, 19].

Evaluation of enhancer sites by PCA
To investigate the diverse distribution of our reference 
enhancer sites, we used the principal component analysis 
(PCA) based on the H3K27ac read densities in the inte-
grated EC enhancer sites with the 117 cell lines from the 
Roadmap Epigenomics Project [19]. We found that ECs 
were well clustered and separated from other cell lines 
(Fig. 2b). Remarkably, HUVECs represented in the Road-
map Epigenomics Project dataset, termed E122, were 
properly included in the EC cluster (red circle). In con-
trast, IMR90 cells from our study were included in the 
non-EC cluster (blue circle). This result supported the 
reliability of our EC-specific enhancer profiling. It should 
be noted, however, that the samples for each EC cell 
type (indicated by different colors) were not well clus-
tered, possibly because the EC type-specific difference is 
minuscule and is overshadowed by differences at the level 
of the individual.

Fig. 2  ChIP-seq data indicate variation in the chromatin status of ECs. a Top: the number of active promoter and enhancer sites for the nine cell 
types along with the merged reference sites. Bottom: the percentage of the reference active promoter and enhancer sites shared by 1–9 of the EC 
types. b PCA plot using H3K27ac read densities. All EC samples in this paper (red circle) as well as 116 cell lines from the Roadmap Epigenomics 
Project (blue circle) are shown. The label colors indicate the EC types. c, d Normalized read distribution of H3K4me3 (green) and H3K27ac (orange) 
in representative gene loci c KDR and ICAM2 and d CALCRL and TFPI for all ECs and two other tissues (liver data from the Roadmap and IMR90 cell 
data from this study). Chromatin loops based on ChIA-PET (read-pairs) are represented by red arches. Green bars, black bars and red triangles below 
each graph indicate active promoter sites, enhancer sites and GWAS SNPs, respectively

(See figure on next page.)
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Identification of enhancer–promoter interactions 
by ChIA‑PET
We sought to identify the corresponding gene for the 
reference enhancer sites and used chromatin loop data 
obtained from the Chromatin Interaction Analysis by 
Paired-End Tag Sequencing (ChIA-PET) data using 
RNA Polymerase II (Pol II) in HUVECs. We identified 
292 significant chromatin loops (false discovery rate 
[FDR] < 0.05), 49.3% (144 loops) of which connected 
promoter and enhancer sites. Even when we used all 
chromatin loops (at least one read pair), 27.4% (8782 
of 31,997) of them linked to enhancer–promoter sites. 
Remarkably, 48.1% (4228 of 8782) of loops connected 
the distal enhancer sites. In total, we identified 2686 
distal enhancer sites that are connected by chroma-
tin loops. We also detected enhancer–enhancer (3136, 
9.8%) and promoter–promoter (11,618, 36.3%) loops, 
suggesting physically aggregated chromatin hubs in 
which multiple promoters and enhancers interact [20]. 
As the ChIA-PET data are derived from RNA Pol II-
associated loops in HUVECs, chromatin interactions in 
active genes could be detected.

Identification of EC‑specific sites
Next, we identified EC-specific enhancer sites by 
excluding any sites from our reference sites that over-
lapped with those of our IMR90 cells and other cell 
types from the Roadmap Epigenomics Project, except 
HUVECs (E122). As a result, we obtained 3765 EC-spe-
cific enhancer sites (Additional file  4: Table  S3), some 
of which were located around known marker genes of 
ECs with chromatin loops. One example is kinase insert 
domain receptor (KDR; Fig. 2c, left), which functions as 
the VEGF receptor, causing endothelial proliferation, 
survival, migration, tubular morphogenesis and sprout-
ing [21]. The TSS of KDR was marked as an active pro-
moter (enriched for both H3K4me3 and H3K27ac) and 
physically interacted with the EC-specific enhancer 
sites indicated by H3K27ac, ~ 50 kbp upstream and 
downstream of the TSS. Another example is intercellu-
lar adhesion molecule 2 (ICAM2; Fig. 2c, right), which 
is an endothelial marker and is involved in the binding 
to white blood cells that occurs during the antigen-spe-
cific immune response [22]. This gene has two known 
TSSs, both of which were annotated as active promot-
ers in ECs and one of which that was EC specific (black 
arrow). This EC-specific TSS did not have a ChIA-PET 
interaction, and, likewise, the enhancer sites within the 
entire gene body did not directly interact with the adja-
cent promoter sites, implying the distinctive regulation 
of the two ICAM2 promoters.

Genome‑wide association study (GWAS) enrichment 
analysis
To explore the correlation of EC-specific reference 
enhancer sites with sequence variants associated with 
disease phenotypes, we obtained reference GWAS 
single-nucleotide polymorphisms (SNPs) from the 
GWAS catalog [23] and identified significantly enriched 
loci by permutation analysis [24]. Notably, we identi-
fied 67 enhancer sites that markedly overlapped with 
GWAS SNPs associated with “heart”, “coronary” and 
“cardiac” (Z score > 5.0, Additional file  5: Table  S4). The 
most notable region was around CALCRL and TFPI loci 
(chr2:188146468–188248446, Fig.  2d). The EC-specific 
enhancer region in these loci contained four GWAS risk 
variants (Fig. 2d, red triangles), three of which are associ-
ated with coronary artery/heart disease [25, 26]. Another 
example is the RSPO3 locus (Additional file 3: Figure S4). 
The upstream distal enhancer regions of that gene con-
tained four GWAS SNPs that are associated with cardio-
vascular disease and blood pressure [27, 28].

Functional analysis of the reference sites
We next investigated whether any characteristic sequence 
feature is observed in the EC-specific enhancer sites, as 
well as in the active promoter and distal enhancer sites; 
the subgroup “all enhancers” was omitted because of 
its close similarity with the “distal enhancer” subgroup. 
We found many putative motifs in EC-specific enhanc-
ers and fewer motifs in the active promoter and distal 
enhancer subgroups. Some of these motifs had candi-
date transcription factors (TFs) assigned in the JASPAR 
database (Additional file 3: Figure S5). Of note, EC-spe-
cific enhancer sites had motifs similar to those in the 
homeobox genes bcd, oc, Gsc and PITX1-3 (Fig. 3), sug-
gesting their involvement in orchestrating EC-specific 
gene expression. In fact, because most of the EC-spe-
cific enhancer sites consisted of enhancers in HGSVECs 
(47.0%), HRAECs (37.4%) and HUAECs (68.3%) (Addi-
tional file  3: Figure S6), the identified motifs might be 

Putative

bcd, oc, Gsc

PITX1,2,3

Fig. 3  The identified de novo motif from EC-specific enhancer sites. 
The two related canonical motifs derived from the JASPAR database 
are also shown
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involved mainly in the function of these EC types. Active 
promoter and distal enhancer sites had fewer candidate 
TFs as compared with EC-specific enhancer sites, pos-
sibly because they contain sites corresponding to more 
common genes (e.g., housekeeping genes). We found 
that active promoters (and EC-specific enhancers) have a 
motif similar to the canonical motif of the ETS2 repres-
sor factor ERF (Additional file 3: Figure S5), which is con-
sistent with previous studies [8, 13, 14] that reported that 
the ETS family motif is enriched in enhancers of several 
EC types.

We also looked into the Gene Ontology (GO) classifi-
cations under Biological Process for the enhancer sites 
using GREAT [29] and found that the enhancer sites 
(both all sites and EC-specific sites) have GO terms that 
are more specific to the vascular system (e.g., platelet 
activation, myeloid leukocyte activation and vasculo-
genesis), as compared with active promoter sites (e.g., 
mRNA catabolic process, Additional file  3: Figure S7). 
This also suggests that the enhancer sites are more likely 
to be associated with EC-specific functions, whereas pro-
moter sites are also correlated with the more common 
biological functions.

Differential analysis and clustering across EC types
One important issue of this study is to clarify the epig-
enomic/transcriptomic diversity across EC cell types. 
To circumvent variances at the level of the individual in 
each cell type observed (Fig. 2c) and different S/N ratios, 
we fitted the value of peak intensity on the reference 
enhancer sites among samples using generalized linear 
models with the quantile normalization. By implement-
ing a PCA, we confirmed that different cell samples in the 
same EC type were properly clustered (Fig. 4a). The PCA 
also showed that different EC types can be divided into 
two subgroups based on the epigenomic landscape, cor-
responding to upper-body (HAoEC, HCoAEC, HPAEC, 
HCCaEC and HENDC, purple circle) and lower-body 
(HUVEC, HUAEC, HGSVEC and HRAEC) origins. 
A PCA based on gene expression data showed similar 
results to that based on the H3K27ac profile, although in 
the gene expression analysis HUAECs were more similar 
to heart ECs (Additional file 3: Figure S8).

To further investigate this tendency, we implemented 
a multiple-group differential analysis with respect to 
H3K4me3, H3K27ac and gene expression data to obtain 
sites and genes whose values varied significantly between 
any of the nine cell types. With the threshold FDR < 1e−5, 
we identified 753 differential H3K4me3 sites (differential 
promoters, DPs; 8.3% from 9121 active promoter sites), 
2979 differential H3K27ac sites (differential enhancers, 
DEs; 9.2% from 32,323 active promoter and enhancer 
sites) and 879 differentially expressed genes (DEGs; 2.1% 

from 41,880 genes). As expected, DPs and DEs were more 
enriched around DEGs, as compared with all genes. DPs 
were enriched within ~ 10 kbp from TSSs, whereas DEs 
were more broadly distributed (~ 100 kbp) (Additional 
file  3: Figure S9), indicative of the longer-range interac-
tions between enhancers and their corresponding genes.

We then implemented k-means clustering (k = 6) to 
characterize the overall variability of DEGs, DEs (Fig. 4b) 
and DPs (Additional file  3: Figure S10). The clustering 
results are also summarized in Additional file 6: Table S5, 
Additional file 7: Table S6 and Additional file 8: Table S7. 
Although k = 6 was empirically defined and might not 
be biologically optimal to classify the nine EC types, the 
results did capture differential patterns among them. The 
upregulated genes were roughly categorized into upper- 
and lower-body-specific EC types (Fig. 4b), even though 
diverse expression patterns were observed overall. In par-
ticular, the expression patterns of the EC types around 
the heart (HCoAEC, HAoEC and HPAEC) were simi-
lar (cluster 3 of DP and DEG), consistent with the ana-
tomical proximity of these ECs. HENDCs had uniquely 
expressed genes (cluster 6 of DEGs). Considering that 
most of the DEGs and DEs are cooperatively enriched 
in more than one EC type, these nine EC types may use 
distinct combinations of multiple genes, rather than 
exclusively expressed individual genes, for their specific 
phenotype.

DEGs that contribute to EC functions
Our clustering analysis identified important genes for EC 
functions as DEGs (Fig. 4b). For example, heart and neu-
ral crest derivatives expressed 2 (HAND2) and GATA-
binding protein 4 (GATA4) were expressed in HAoECs, 
HENDCs and HPAECs (cluster 3). HAND2 physically 
interacts with GATA4 and the histone acetyltransferase 
p300 to form the enhanceosome complex, which regu-
lates tissue-specific gene expression in the heart [30]. 
Another example is hes related family bHLH transcrip-
tion factor with YRPW motif 2 (HEY2, also called Hrt2), 
a positive marker for arterial EC specification [31], which 
was grouped into cluster 5 and was expressed specifi-
cally in aorta-derived ECs but not in vein-derived ECs 
(HUVECs and HGSVECs). HRAECs showed uniquely 
upregulated genes, including cadherin 4 (CDH4); the 
protein product of this gene mediates cell–cell adhe-
sion, and mutation of this gene is significantly associated 
with chronic kidney disease in the Japanese population 
[32]. Interestingly, at TSSs of the CDH4 and HEY2 loci, 
H3K4me3 was also enriched in some EC types in which 
the genes were not expressed, whereas the H3K27ac 
enrichment pattern at TSSs was correlated with the 
expression level of these genes (Fig.  4c). This variation 
in H3K4me3 with/without H3K27ac enrichment may 
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reflect the competence of expression, which cannot be 
fully captured by gene expression analysis.

DEGs also contained several notable gene families. 
One example is the claudin family, a group of trans-
membrane proteins involved in barrier and pore forma-
tion [33]. Whereas CLDN5 has been reported as a major 
constituent of the brain EC tight junctions that make up 
the blood–brain barrier [34], we found that seven other 
genes belonging to the claudin family (CLDN1, 7, 10, 11, 
12, 14 and 15) were expressed in ECs, and their expres-
sion pattern varied across EC types (Additional file 3: Fig-
ure S11). For example, in HUVECs, CLDN11 was highly 
expressed but CLDN14 was not, although the two clau-
dins share a similar function for cation permeability [35]. 
These observations suggest that distinct usages of specific 

claudin proteins may result in different phenotypes with 
respect to vascular barrier function. Consequently, these 
DEGs are thus usable as a reference marker set for each 
EC type.

Homeobox genes are highly differentially expressed 
across EC types
We also found that DEGs identified in our analysis con-
tained genes that were not previously acknowledged as 
relevant to the different EC types. Most strikingly, quite a 
few homeobox (HOX) genes were differentially expressed 
(cluster 1 in Figs. 4b and 5a). The human genome has four 
HOX clusters (HOXA, B, C and D), each of which con-
tains 9–11 genes essential for determining the body axes 
during embryonic development, as well as regulating cell 
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proliferation and migration in diverse organisms [36]. 
These genes are transcribed sequentially over both time 
and space, according to their positions within each clus-
ter [37]. Figure 5a shows that genes in HOX clusters A, B 

and D were highly expressed in all EC types, except HEN-
DCs, possibly because HENDCs are derived from cardiac 
neural crest, whereas the other EC types are derived from 
mesoderm [38]. HOXC genes were moderately expressed 

a b
H

A
oE

C

H
C

C
aE

C

H
C

oA
E

C

H
E

N
D

C

H
G

S
V

E
C

H
R

A
E

C

H
U

V
E

C

H
U

A
E

C

H
P

A
E

C

H
O

X
 A

H
O

X
 B

H
O

X
 C

H
O

X
 D

c

coding
noncoding

HAGLR

HOXD10

HOXD11

KIAA1715

HOXD4
HOXD3

HOXD12

LINC01116

LINC01117MTX2

HOXD1HOXD13

HOXD-AS2

HOXD9

EVX2

HOXD8

Chromatin loops

176.800M 176.900M 177.000M 177.100M 177.200M 177.300M 177.400M 177.500M 177.600M

EC15

EC26

EC34

EC23

EC42

EC38

EC55

EC45

EC46

EC47

EC52

EC89

EC112

EC13

EC31

EC14

EC25

EC39

EC40

Liver
IMR90

HCoAEC

HENDC

HCCaEC

HGSVEC

HAoEC

HPAEC

HUVEC

EC60

EC59

EC116

HRAEC

EC150

EC156

EC154

EC146

EC160

EC158

EC162

EC29

EC61

EC28

EC35HUAEC

Other

HOXD cluster

C-DOM T-DOM

A1
A2
A3
A4
A5
A6
A7
A9
A10
A11

B1
B2
B3
B4
B5
B6
B7
B8
B9
B13

C11

C4

C5

C6

C10

C8

C9

C13

LINC01116

D1
D3
D4

D10

D8
D9

D13

LINC01117

LINCs

HGSVEC

HRAEC

HUVEC

HAGLR

D10 HAGLROSD11

MIR10B

D4 D3

MIR7704

D1D-AS2D9 D8

HCoAEC

Fig. 5  Differential expression of HOX genes. a Heatmaps visualizing the gene expression level (logged transcripts per million [TPM]) of four HOX 
clusters and two long non-coding RNAs, LINC01117 (Hotdog) and LINC01116 (Twin of Hotdog). Blue vertical bars indicate the 5′ HOX genes. b 
Read distribution around the HOXD cluster (chr2: 176.8–177.6 Mbp). Bottom: topological interaction frequency, telomeric domain (T-DOM) and 
centromeric domain (C-DOM) identified by Hi-C data for HUVECs. c Comparison of read profiles around the HOXD region for four EC types



Page 10 of 16Nakato et al. Epigenetics & Chromatin           (2019) 12:77 

in HRAECs, HUVECs and HUAECs, but not in the 
upper-body ECs. More interestingly, perhaps, HOXD 
genes were not expressed in HPAECs, despite their simi-
lar expression pattern relative to other EC types around 
the heart (Fig.  4b). This result implies the distinct use 
of HOX paralogs, especially HOXD genes, in ECs. We 
also found that the 5′ HOX genes (blue bars in Fig.  5a) 
tended to be selectively expressed in EC types derived 
from the lower body (HGSVECs, HRAECs, HUAECs and 
HUVECs). Considering the collinearity of their activation 
during axial morphogenesis, it is conceivable that the 
type-specific expression of HOX clusters, especially in 5′ 
HOX genes, reflects the developmental origin of EC types 
and that distinct activation of HOX genes collectively 
maintains the diversity of the circulatory system.

It has been suggested that the more 3′ HOX genes tend 
to promote the angiogenic phenotype in ECs, whereas the 
more 5′ HOX genes tend to be inhibitory with respect to 
that phenotype [36]. For example, HOXD3 may promote 
wound healing and invasive or migratory behavior dur-
ing angiogenesis in ECs [39]. In contrast, HOXD10 may 
function to inhibit EC migration by muting the down-
stream effects of other pro-angiogenic HOX genes (e.g., 
HOX3 paralogs), and thus human ECs that overexpress 
HOXD10 fail to form new blood vessels [40]. Figure  5a 
shows that HOXD10 was highly expressed in HGSVECs, 
which leads to the inhibition of the angiogenic phenotype 
as regulated by HOXD10 in this cell type.

In addition to HOX genes, multiple non-HOX home-
obox genes were also differentially regulated across ECs. 
For example, cluster 3 in the DEGs contained NK2 home-
obox  5 (Nkx-2.5), which is essential for maintenance of 
ventricular identity [41]; paired like homeodomain 2 
(PITX2) and paired related homeobox 1 (PRRX1), which 
are both associated with the atrial fibrillation and cardi-
oembolic ischemic stroke variants loci [42–44]; and Meis 
homeobox 1 (MEIS1), which is required for heart devel-
opment in mice [45]. These were all associated with the 
GO term “blood vessel morphogenesis (GO:0048514)”. 
Interestingly, PITX3 was mainly expressed in HENDCs 
(cluster 6), unlike PITX2. Another example is Mesen-
chyme Homeobox 2 (MEOX2, also known as Gax; clus-
ter 4), which regulates senescence and proliferation in 
HUVECs [46] and was also expressed in HUAECs and 
HGSVECs but not in other cell types. Taken together 
with the finding that some binding motifs of homeobox 
genes including PITX were identified among the EC-
specific enhancer sites (Fig.  3), these data suggest that 
distinct combinations of proteins coded by HOX and 
non-HOX homeobox genes play a key role in mature 
human ECs for angiogenesis, vasculogenesis and wound 
healing, in addition to their function during the develop-
ment and proliferation of ECs.

Enhancers in the telomeric domain were upregulated 
within the HOXD cluster
Lastly, we investigated the epigenomic landscape around 
the HOXD cluster (Fig.  5b). It has been reported that 
the mammalian HOXD cluster is located between two 
enhancer-rich topologically associating domains (TADs), 
the centromeric domain (C-DOM) and the telomeric 
domain (T-DOM), which are activated during limb and 
digit development, respectively [47]. By using public 
Hi-C (genome-wide chromosome conformation capture) 
data for HUVECs [48] to detect the T-DOM and C-DOM 
(bottom black bars), we observed the presence of EC 
enhancers in the T-DOM (Fig.  5b), as in early stages of 
limb development [47]. Of note, two long non-coding 
RNAs, LINC01117 (Hotdog) and LINC01116 (Twin of 
Hotdog), which physically contact the expressed HOXD 
genes and are activated during cecum budding [49], had 
ChIA-PET loops and showed similar expression patterns 
with HOXD genes in ECs (Fig.  5a, b). In the T-DOM, 
some enhancers are likely to be activated in most EC 
types (Fig.  5b, black arrow), whereas others are active 
only in ECs from the lower body (blue arrow), suggest-
ing a physical interaction between these enhancers and 
each HOXD gene in a constitutive and a cell type-specific 
manner, respectively. A detailed view of the genomic 
region from HOXD1 to HOXD11 (Fig.  5c) shows that 
H3K4me3 and H3K27ac are specifically enriched within 
the HOXD10 locus in HGSVECs, which is consistent 
with their gene expression pattern. Because the HOXD10 
locus did not have ChIA-PET loops in HUVECs, there 
might be HGSVEC-specific chromatin loops.

Discussion
In this study, we analyzed the epigenomic status of the 
active histone modifications H3K4me3 and H3K27ac 
in 33 samples from nine different EC types by ChIP-
seq, RNA-seq, ChIA-PET and Hi-C analyses. The EC 
donors in this study varied in age (newborn to 78 years 
old), sex, race (Afro-American, Arabic, Asian, Cauca-
sian, Native American) and medical history, all features 
that may influence the epigenomic profiles of these iso-
lated cells. Although it is difficult to completely avoid 
effects from these factors in a human study because of 
the limited number of donors [50], we did carry out mul-
tiple approaches to mitigate potential biases as much as 
possible. For instance, instead of carrying out all-by-all 
pairwise comparisons, we focused on a multiple-group 
comparison for the nine EC types, in which each group 
can ‘borrow’ information from the other groups and min-
imize the impact of inherent noise in each group.

The integrative ChIP-seq analysis described here, 
which was based on samples from the human tissues 
of multiple donors, is potentially hampered by both 
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individual variation and technical noise derived from 
sample preparation under various conditions, relative to 
the smaller differences among EC types. To overcome 
this issue, at least in part, we developed a robust proce-
dure for comparative epigenome analysis. We focused 
on two histone modifications, H3K4me3 and H3K27ac, 
which exhibit robust, sharp peaks and therefore are suit-
able for identifying shared and/or unique features across 
EC cell types, in contrast to more broad histone marks 
(e.g., H3K9me3). To ensure the robustness of this study, 
we used a rather conservative procedure for detecting 
EC-specific sites, which considered only the common 
sites among all samples that did not overlap with peaks 
in all 116 cell lines from the Roadmap Epigenomics Pro-
ject. Therefore, there may be “true” enhancer sites among 
the filtered ones. In the small comparative analysis using 
a subset of our data (e.g., a pairwise comparison between 
an artery EC and a vein EC), more enhancer sites may be 
included for the downstream analysis. In addition, for 
motif analysis, the information concerning the precise 
position of TF binding might have been lost because mul-
tiple nearby sites were merged into a single large refer-
ence site. A more specialized scheme for each EC type 
may increase the power to identify additional candidates 
of binding TFs.

In the future, we aim to expand this analysis to other 
core histone marks including suppressive markers (e.g., 
H3K27me3 and H3K9me3) and apply semi-automated 
genome annotation methods [51]. Because this type of 
genome annotation strategy with its associated assem-
bling of broad marks is more sensitive to noise, more 
stringent quality control of tissue data will be required.

We successfully identified 3765 EC-specific enhancer 
sites, 67 of which were highly significantly overlapping 
with GWAS SNPs. We also found variation in H3K4me3 
enrichment at TSSs that may reflect the competence of 
gene expression, which cannot be fully captured by gene 
expression analysis (Fig.  4c). The PCA showed that EC 
types can be divided into those from the upper and from 
the lower body (Fig. 4a). Most of the DEGs and DEs are 
cooperatively enriched in more than one EC type. Fur-
thermore, our analysis suggests the importance of the 
differential usage of genes in gene families for the diver-
sity of the circulation system. For instance, we identified 
a regulatory motif enriched in EC-specific enhancers 
that is very similar to that of homeobox protein PITX 
(Fig.  3), whereas PITX2 and 3 are included in differ-
ent DEG clusters (Fig. 4b). We also found the distinctive 
expression pattern of genes belonging to HOX clusters 
(Fig.  5a) and the claudin family across ECs (Additional 
file 3: Figure S11), even when they share a similar func-
tion. Consequently, the nine EC types tend to use distinct 

combinations of multiple genes, rather than exclusively 
expressed genes, for their specific phenotype.

Our results identified key marker genes that were dif-
ferentially expressed across EC types, such as homeobox 
genes. The importance of several HOX genes for early 
vascular development and adult angiogenesis in patho-
logical conditions has been reported [52]. However, a 
systematic analysis of the regulation and roles of home-
obox genes in mature tissue cells has been lacking. A 
recent study indicates that the patterns of gene expres-
sion in HOX clusters in four different organs are consist-
ent with their anterior–posterior positions within the 
mouse body [14]. Consistent with this, we found that the 
5′ HOX genes tended to be selectively expressed in EC 
types derived from the lower body, which might reflect 
the developmental origin of EC types (Fig.  5a). We also 
found that the multiple non-HOX homeobox genes were 
also differentially regulated across ECs, indicative of the 
importance of differential usage of homeobox proteins 
beyond the four HOX cluster regions. Moreover, we 
identified distinct epigenome states and chromatin con-
formations of HOX gene clusters and flanking regions in 
different EC types. Although a low correlation between 
gene expression level and DNA methylation was reported 
in mouse ECs [14], the levels of active histone marks 
H3K4me3 and H3K27ac were correlated with the gene 
expression pattern in human ECs. Thus, in ECs HOX 
gene expression is likely to be regulated by histone modi-
fications rather than DNA methylation. Taken together, 
our data suggest the distinct roles and combinatorial 
usage of proteins coded by HOX and non-HOX home-
obox genes during development and in regulating EC 
phenotypes throughout the body.

Conclusions
The primary goal of the IHEC project is to generate high-
quality reference epigenomes and make them available to 
the scientific community [15]. To this end, we established 
an epigenetic catalog of various human ECs and imple-
mented comprehensive analysis to elucidate the diversity 
of the epigenomic and transcriptomic landscape across 
EC types. The dataset presented in this study will be an 
important resource for future work on understanding the 
human cardiovascular system and its associated diseases.

Methods
Tissue preparation
ECs were isolated from the vasculature and main-
tained as primary cultures, as reported [53, 54]. Briefly, 
HAoECs, HCoAECs, HENDCs, HPAECs and HUVECs 
were isolated from the various vessels by incubating the 
vessels with collagenase at 37  °C for 30  min. The aortic 
root was used for HAoEC isolation. Cells were plated 
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in tissue culture flasks (Iwaki Glass Co. Ltd., cat. No. 
3110-075-MYP) and cultured for one or more passages 
in modified VascuLife VEGF Endothelial Medium (Life-
line Cell Technology). A reduced concentration of VEGF 
that was lower than 5  ng/mL was tested in preliminary 
cell culture experiments and then optimized to be as low 
as possible considering cell growth and viability (data not 
shown). The VEGF concentration was lowered to 250 pg/
mL, which is lower than the standard culture conditions, 
to more closely replicate in  vivo concentrations [55]. 
ECs were separated from non-ECs using immunomag-
netic beads. Fibroblasts were first removed using anti-
fibroblast beads and the appropriate magnetic column 
(Miltenyi Biotec). The remaining cells were then purified 
using Dynabeads and anti-CD31 (BAM3567, R&D Sys-
tems). When positive selection was used, the bead-bound 
cells were removed from the cell suspension prior to 
cryopreservation.

HCCaECs and HRECs were prepared by an explant 
culture method [54]. HGSVECs were isolated from dis-
carded veins taken from patients at Saitama Medical Uni-
versity International Medical Center.

Quality control was performed using a sterility test (for 
bacteria, yeast and fungi), a PCR-based sterility test (for 
hepatitis B and C, HIV-I and -II and mycoplasma) and 
immunostaining-based characterization for von Wille-
brand factor (vWF) (> 95% cells are positively stained 
[56]) and alpha-actin, and viability was determined by 
both counting and trypan blue staining.

Cell culture
Purified ECs were cultured in VascuLife VEGF Endothe-
lial Medium (Lifeline Cell Technology) with 250  pg/mL 
VEGF. Cells were maintained at 37  °C in a humidified 
5% CO2 incubator, and the medium was changed every 
3  days. The cells used in the experiments were from 
passage 6 or less. The cryopreservation solution used 
consisted of VascuLife VEGF Endothelial medium, con-
taining 250  pg/mL VEGF, 12% fetal bovine serum and 
10% dimethylsulfoxide.

RNA‑seq analysis
Poly(A)-containing mRNA molecules were isolated from 
total RNA and then converted to cDNA with oligo(dT) 
primers using a TruSeq RNA Sample Preparation kit v2 
(Illumina) and were sequenced with a HiSeq  2500 sys-
tem (Illumina). We applied sequenced paired-end reads 
to kallisto version 0.43.1 [57] with the “–rf-stranded -b 
100” option, which estimates the transcript-level expres-
sion values as Transcripts Per Kilobase Million (TPM, 
Ensembl gene annotation GRCh37). These transcript-
level expression values were then assembled to the 
gene-level by tximport [58]. We also obtained RNA-seq 

data from IMR90 cells from the Sequence Read Archive 
(SRA) (www.ncbi.nlm.nih.gov/sra) under accession num-
ber SRR2952390. The full list of gene expression data is 
available at the NCBI Gene Expression Omnibus (GEO) 
under the accession number GSE131953.

ChIP
For each EC sample, two million ECs were plated on a 
15-cm culture plate and cultured until confluency. The 
cells were crosslinked for 10  min using 1% paraformal-
dehyde. After quenching using 0.2 M glycine, cells were 
collected using a scraper, resuspended in SDS lysis buffer 
(10 mM Tris–HCl, 150 mM NaCl, 1% SDS, 1 mM EDTA; 
pH 8.0) and fragmented by sonication (Branson; 10 min). 
Samples were stored at −  80  °C before use. To perform 
ChIP, antibodies against histone modifications (CMA304 
and CMA309 for H3K4me3 and H3K27ac, respectively) 
[59] were used in combination with protein G Sepharose 
beads (GE Healthcare Bio-Sciences AB, Sweden). The 
prepared DNA was quantified using Qubit (Life Tech-
nologies/Thermo Fisher Scientific), and > 10  ng of DNA 
was processed, as described below. The primer sequences 
for ChIP-qPCR were as follows: for H3K4me3, KDR 
(Fw: CCA​CAG​ACT​CGC​TGG​GTA​AT, Rv: GAG​CTG​
GAG​AGT​TGG​ACA​GG) and GAPDH (Fw: CGC​TCA​
CTG​TTC​TCT​CCC​TC, Rv: GAC​TCC​GAC​CTT​CAC​
CTT​ CC); for H3K27ac, ANGPTL4 (Fw: TAG​GGG​AAT​
GGG​TAG​GGA​AG, Rv: AGT​TCT​CAG​GCA​GGT​GGA​
GA) and GATA2 (Fw: AGA​CGA​CCC​CAA​CTG​ACA​TC, 
Rv: CCT​TCA​AAT​GCA​GAC​GCT​TT) and, as a negative 
control, HBB (Fw: GGG​CTG​AGG​GTT​TGA​AGT​CC, Rv: 
CAT​GGT​GTC​TGT​TTG​AGG​TTGC).

ChIP‑seq analysis
Sequencing libraries were made using the NEBNext 
ChIP-Seq Library Prep Master Mix Set of Illumina (New 
England Biolabs). Sequenced reads were mapped to the 
human genome using Bowtie version 1.2 [60] allowing 
two mismatches in the first 28 bases per read and output-
ting only uniquely mapped reads (-n2 -m1 option). Peaks 
were called by DROMPA version 3.5.1 [61] using the 
stringent parameter set (-sm 200 -pthre_internal 0.00001 
-pthre_enrich 0.00001) to mitigate the effect of technical 
noise. The mapping and peak statistics are summarized 
in Additional file 2: Table S2.

Quality validation of ChIP‑seq samples
We checked the quality of each sample based on the 
peak number, library complexity and GC content bias by 
DROMPA; the normalized strand coefficient and back-
ground uniformity by SSP [17]; inter-sample correlation 
(Jaccard index of peak overlap) by bedtools (https​://githu​
b.com/arq5x​/bedto​ols2); and the pairwise correlations of 

http://www.ncbi.nlm.nih.gov/sra
https://github.com/arq5x/bedtools2
https://github.com/arq5x/bedtools2
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read coverage by deepTools version 2.5.0 [62] (Additional 
file 3: Figure S1).

Regression analysis of ChIP‑seq data
To estimate the expression level of a gene from the level 
of its histone modifications, we implemented the linear 
regression analysis proposed by Karlic et  al. [18] with 
minor modifications. We built a two-variable model to 
predict the expression level for each mRNA as follows:

where x1 and x2 are the log-scale base pair coverage 
in a region of 4-kbp surrounding the TSSs covered by 
obtained peaks of H3K4me3 and H3K27ac, respectively. 
We used the level of protein-coding mRNA in autosomes 
as an estimation of the level of histone modifications. We 
then learned the parameters a, b1 and b2 using all of the 
EC samples and the IMR90 sample to minimize the dif-
ferences between observed and expected values. Using 
the learned parameter set, we predicted the expression 
value for each mRNA and calculated the Pearson correla-
tion between observed and expected values.

Definition of reference promoter and enhancer sites
As shown in Fig.  1b, we defined active promoters and 
enhancers as “H3K4me3 sites overlapping with H3K27ac 
sites by ≥ 1 bp” and “H3K27ac sites not overlapping with 
H3K4me3 sites”, respectively, based on the annotation of 
the Roadmap Epigenomics consortium [19]. Peaks from 
sex chromosomes were excluded to ignore sex-specific 
differences. To avoid the effect of individual differences, 
the common sites among all samples were used as the 
reference sites for each cell type. Then the reference sites 
of all cell types were merged into the reference sites for 
ECs. Multiple sites that were within 100 bp of each other 
were merged to avoid multiple counts of large individual 
sites. The generated reference promoter and enhancer 
sites are available at the GEO under the accession num-
ber GSE131953.

Identification of EC‑specific sites
We called peaks for H3K4me3 and H3K27ac for 
all 117 cell lines in the Roadmap Epigenomics Pro-
ject by DROMPA with the same parameter set. We 
then excluded the sites in the reference promoter and 
enhancer sites of ECs that overlapped the H3K4me3 
peaks (promoter sites) or H3K27ac peaks (enhancer sites) 
of all cells except for E122 (HUVECs) from the Road-
map Epigenomics Project. Similarly, we further excluded 
the sites that overlapped H3K27ac peaks of IMR90 cells 
generated by this study, to avoid the protocol-dependent 
false-positive peaks. The resulting sites were used as EC-
specific sites. We also defined “distal enhancer sites” as 

f (x1, x2) = a+ b1x1 + b2x2,

those that are > 10 kbp from the nearest TSS. These sites 
are summarized in Additional file 4: Table S3.

GWAS enrichment analysis
We implemented GWAS enrichment analysis using a 
strategy similar to that of Lake et  al. [24]. We obtained 
reference SNPs from the GWAS Catalog [23]. We then 
calculated the occurrence probability of GWAS SNPs 
associated with the terms “heart”, “coronary” and “car-
diac” in 100-kb regions centered on all EC-specific 
enhancer sites and investigated their statistical sig-
nificance by random permutations. We extended each 
enhancer site to a 100-kb region to consider linkage dise-
quilibrium with GWAS SNPs. We identified the enhancer 
sites with a Z-score > 5.0. We shuffled the enhancer sites 
randomly within each chromosome, ignoring the centro-
meric region, using bedtools shuffle command.

Differential analysis of multiple groups for histone 
modification and gene expression
We applied the ANOVA-like test in edgeR [63] based 
on the normalized read counts of H3K4me3 ChIP-seq 
data in active promoters and H3K27ac ChIP-seq data in 
active promoters and enhancers, as well as gene expres-
sion data, while fitting the values among samples to 
estimate dispersion using generalized linear models. 
For RNA-seq data, the count data were fitted using a 
generalized linear model, and the Z-score was calcu-
lated based on logged values. For ChIP-seq data, we also 
applied the quantile normalization to peak intensity in 
advance of the fitting because this model does not con-
sider the different S/N ratios among samples [50]. This 
normalization assumes that the S/N ratio for most of 
the common peaks should be the same among all sam-
ples in which the same antibody was used. Additional 
file 3: Figure S12 shows the distribution patterns of the 
H3K27ac read density normalized for quantile normali-
zation for all ECs.

Chromatin interaction analysis
We used ChIA-PET data mediated by RNA Pol II for 
HUVECs [64]. We acquired fastq files from the GEO 
under accession number GSE41553, applied Mango [65] 
with default parameter settings and identified the 943 
significant interactions (1886 sites, FDR < 0.05). For Hi-C 
analysis, we acquired.hic files for HUVECs from the GEO 
under accession number GSE63525 and applied Juicer 
[48] to obtained the TAD structure (Fig. 5b).

Motif analysis
We used MEME-ChIP version 5.0.1 [66] with the 
parameter set “-meme-mod zoops -meme-minw 6 
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-meme-maxw 14” with the motif data “JASPAR2018_
CORE_non-redundant.meme”.
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