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Cells adapt to the epigenomic disruption 
caused by histone deacetylase inhibitors 
through a coordinated, chromatin‑mediated 
transcriptional response
John A Halsall, Nil Turan, Maaike Wiersma and Bryan M Turner*

Abstract 

Background:  The genome-wide hyperacetylation of chromatin caused by histone deacetylase inhibitors (HDACi) 
is surprisingly well tolerated by most eukaryotic cells. The homeostatic mechanisms that underlie this tolerance are 
unknown. Here we identify the transcriptional and epigenomic changes that constitute the earliest response of 
human lymphoblastoid cells to two HDACi, valproic acid and suberoylanilide hydroxamic acid (Vorinostat), both in 
widespread clinical use.

Results:  Dynamic changes in transcript levels over the first 2 h of exposure to HDACi were assayed on High Den-
sity microarrays. There was a consistent response to the two different inhibitors at several concentrations. Strikingly, 
components of all known lysine acetyltransferase (KAT) complexes were down-regulated, as were genes required 
for growth and maintenance of the lymphoid phenotype. Up-regulated gene clusters were enriched in regulators 
of transcription, development and phenotypic change. In untreated cells, HDACi-responsive genes, whether up- or 
down-regulated, were packaged in highly acetylated chromatin. This was essentially unaffected by HDACi. In contrast, 
HDACi induced a strong increase in H3K27me3 at transcription start sites, irrespective of their transcriptional response. 
Inhibition of the H3K27 methylating enzymes, EZH1/2, altered the transcriptional response to HDACi, confirming the 
functional significance of H3K27 methylation for specific genes.

Conclusions:  We propose that the observed transcriptional changes constitute an inbuilt adaptive response to 
HDACi that promotes cell survival by minimising protein hyperacetylation, slowing growth and re-balancing patterns 
of gene expression. The transcriptional response to HDACi is mediated by a precisely timed increase in H3K27me3 at 
transcription start sites. In contrast, histone acetylation, at least at the three lysine residues tested, seems to play no 
direct role. Instead, it may provide a stable chromatin environment that allows transcriptional change to be induced 
by other factors, possibly acetylated non-histone proteins.
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Background
Levels of histone acetylation across the genome reflect 
a dynamic equilibrium between the activities of two 
enzyme families, lysine acetyltransferases (KATs) and 

histone deacetylases (HDACs) [1, 2]. HDAC activity can 
be suppressed by a variety of naturally occurring and 
synthetic compounds, resulting in a detectable increase 
in global histone acetylation after 10  min or less, and 
hyperacetylation of over 90 % of H4 molecules after just 
a few hours, indicating that most of the genome is acted 
on by KATs and HDACs ([3, 4] and references therein). 
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This conclusion is consistent with studies on the genomic 
distribution of these enzymes [5–9].

Like other post-translational histone modifications, 
acetylation rarely acts in isolation, but as part of a com-
bination of different modifications, usually along the his-
tone N-terminal tails, that collectively regulate chromatin 
function [10–12]. They do this either by directly influenc-
ing chromatin structure, or by serving as docking sites 
for non-histone proteins which, in turn, exert functional 
change [13–15]. In view of this, generalisations about 
the functional roles of particular modifications are rarely 
appropriate or useful. However, there is a long-standing 
connection between relatively high levels of overall his-
tone acetylation and transcriptional activity [16–18]. 
This association is supported by more recent epigenomic 
studies [19–24], and by experiments on the functional 
consequences of acetylation of specific histone lysines. 
For example, enhanced acetylation of H4 specifically at 
lysine 16 is a marker of the transcriptionally hyperactive 
male X chromosome in D. melanogaster [25, 26] and has 
recently been linked more generally to transcription-
ally active genes [27]. H3K9 acetylation is consistently 
enhanced at gene promoter regions [28, 29], while H3K27 
acetylation protects this residue from methylation by the 
Polycomb silencing Complex PRC2 and consequent long-
term suppression of transcription [30, 31].

In view of this, it is puzzling that cells can tolerate so 
well the massive hyperacetylation of core histones, and 
other proteins, caused by histone deacetylase inhibi-
tors (HDACi). Many cultured cell types, including non-
transformed lines such as mouse embryonic stem cells, 
continue to grow, albeit slowly, in the presence of HDACi 
[32, 33] and whole organisms continue to function [34, 
35]. Indeed, various HDACi have been in clinical use 
for many years. Valproic acid (VPA), a short-chain fatty 
acid, is an effective anti-epileptic and mood stabiliser 
[36], while VPA and chemically more complex HDACi 
such as hydroxamic acid derivatives and depsipeptide, 
have been tested against a variety of cancers [37–40]. It 
has been known for some time that cultured cells treated 
with HDACi do not undergo a global up-regulation of 
transcription. In fact, only a small proportion of genes 
significantly change expression, and up to half of these 
are down-regulated [41–45]. These findings raise fun-
damental questions regarding the relationship between 
histone acetylation and transcription, and about the 
mechanisms by which cells might protect their transcrip-
tional programmes from the potentially disruptive effects 
of induced epigenetic change.

Attempts to define the processes through which 
HDACi influence cell function, are complicated by the 
fact that they usually inhibit several different members 
of the 18-strong HDAC family. The most commonly 

used HDACi, including short-chain fatty acids and 
hydroxamic acid derivatives, inhibit the class I and IIa 
enzymes, HDACs 1, 2, 3, 6 and 8, of which HDACs 1–3 
are consistently chromatin associated and likely to be 
key players in regulation of gene expression [5]. These 
enzymes are catalytically active only when physically 
associated with specific partner proteins and four com-
plexes have been isolated and characterised, namely CoR-
est, NuRD, Sin3 and NCoR/SMRT [46–48]. Class IIb and 
IV enzymes have little or no catalytic activity, while the 
NAD-dependent Class III enzymes (the Sirtuins, SIRT1-
7) have a different catalytic mechanism and are unaf-
fected by HDACi [49, 50]. Finally, each of the class I/IIa 
HDACs has multiple substrates, both histones and non-
histone proteins, including various acetyltransferases and 
deacetylases [51–53].

Most previous work to explore cellular responses to 
HDACi has used treatment times of at least 4 h and often 
24  h or longer, making it impossible to identify the key 
processes that underpin, and initiate, what is inevita-
bly a complex and changing response. The experiments 
described here define the sequential transcriptional and 
histone modification changes that constitute the early 
response (within 2 h) of human cells to VPA and suber-
oylanilide hydroxamic acid (SAHA). The results reveal a 
coordinated transcriptional response that promotes cell 
survival by minimising protein hyperacetylation, slow-
ing growth and re-balancing patterns of gene expression. 
Unexpectedly, the response involves a precisely timed 
increase in H3K27me3 at transcription start sites, but 
little or no increase in histone acetylation, whose role 
seems to be to provide a stable chromatin environment 
that allows transcription to be modified by other factors.

Results
All experiments were carried out with human lympho-
blastoid cell lines, derived from B-lymphocytes immor-
talized, but not fully transformed, by Epstein Barr 
Virus (EBV, [54]). To explore the earliest transcriptional 
responses to HDACi, we treated cells, in triplicate, 
with either sodium valproate or SAHA for 0, 30, 60 and 
120 min. We tested three concentrations of each inhibi-
tor, covering a 25-fold range. A progressive increase in 
histone acetylation was detectable by western blotting at 
all concentrations of both inhibitors (Additional file 1A). 
No change in cell cycle profile or the frequency of apop-
totic cells was detectable within 120 min, but after 24 h 
both inhibitors slowed cell cycle progression and, at the 
highest concentrations tested, induced a small propor-
tion (8–10 %) of apoptotic cells (Additional file 1B).

To monitor changes in transcription, fluorescently-
labelled cDNA from each sample was applied to a Nim-
blegen HD2 135K array, on slides each containing 12 
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such arrays. Thus, a time-course experiment (0, 30, 60, 
120 min), in triplicate, could be accommodated on a sin-
gle slide. We used t tests (P < 0.05, fold change >1.5) to 
identify genes whose transcript levels were significantly 
changed, relative to t0, at each time point. After 120 min 
at the highest concentration of each inhibitor, about 7 % 
of elements on the array showed significantly up- or 
down-regulated expression, in approximately equal num-
bers (Fig. 1).

Defined gene populations show characteristic expression 
changes over time
Genes were clustered into categories according to how 
their expression changed over time. The clustering algo-
rithm was allowed to select the number of groups, which 
ranged from 4 (0.5  µM SAHA) to 10 (2.5  µM SAHA), 
with just 2 for 0.2 mM VPA, where only 22 genes met the 
selection criteria. This strategy resulted in a few groups 
that contained only a small number of genes and, for clar-
ity, only those groups containing >1 % of the total num-
ber of genes analysed are shown in the figures. At every 
concentration except for 0.2 mM VPA, the great majority 
of responding genes behaved in one of four general ways, 
namely progressively increasing from t0, progressively 
decreasing from t0, increasing after an initial lag and 
decreasing after an initial lag. Results for 1 mM VPA and 
2.5 µM SAHA are shown in Fig. 2 and for the remaining 
concentrations in Additional file 2. The two groups from 
0.2 mM VPA treatment are shown as a heat-map in Addi-
tional file 3A.

For each inhibitor, there was a strong overlap between 
genes responding at the different concentrations tested 
(Fig.  3a) and between SAHA and VPA (Fig.  3b). For 
example, combining genes regulated at all doses of each 
inhibitor, 73  % of those genes responding to VPA also 
responded to SAHA. It is particularly interesting to see 
that of the 22 genes whose transcription is significantly 
affected by 0.2 mM VPA (listed in Additional file 4), 21 
are also affected at higher concentrations of VPA (Fig. 3a) 
and 19 are affected by SAHA (Fig.  3b). This gives con-
fidence that despite the small numbers involved and 
the very low dose of VPA, the changes detected are 
part of the same cellular response triggered at higher 
concentrations.

A coordinated transcriptional response to HDACi
Ontology analysis (DAVID, [55]) was used to character-
ise the genes within each of the four groups identified by 
clustering for 1 and 5 mM VPA and all concentrations of 
SAHA (Fig. 2, Additional file 2). Early and late respond-
ing genes, whether up- or down-regulated and at all 
concentrations of both inhibitors, were highly enriched 
in genes involved in transcriptional regulation. These 
included a large number of DNA-binding zinc finger pro-
teins (Fig. 2, Additional file 2).

There was universal down-regulation of genes encod-
ing components of lysine acetyltransferases (KAT) com-
plexes, always following an initial delay (Fig. 2, Additional 
file 2). Table 1 shows the 12 KAT complex members that 
were down-regulated and the extent of the observed 
change. Between them, the down-regulated KAT com-
plexes acetylate all four core histones, along with an 
unknown number of non-histone proteins.

Genes within the “cytokine activity” term were rap-
idly down-regulated by both inhibitors (Fig.  2). Across 
all experiments, this category comprised 41 genes, most 
of which are involved in the differentiation or function 
of lymphocytes and other cells of the immune system 
(Additional file  5). They include 6 interleukins and 12 
genes from the Interferon alpha (IFNA) cluster on chro-
mosome 9. We note also that the TGF-beta superfamily 
gene GDF9, essential for G1-S and G2-M progression 
[56], and its paralogue GDF15, are consistently down-
regulated (Additional file  5); this response can explain 
the characteristic change in cell cycle profile induced by 
HDACi (Additional file 1).

Developmental terms such as “pattern specification 
process” and “HOX genes” were up-regulated, following a 
lag, by both inhibitors (Fig. 2). The “pattern specification 
process” category included 51 genes that were signifi-
cantly up-regulated in at least one of the five experiments 
shown in Fig.  2 and Additional file  2. Amongst these 
genes (listed in Additional file  6) we find 13 homeobox 

0
200
400
600
800

1000
1200
1400
1600
1800
2000

t3
0

t6
0

t1
20 t3
0

t6
0

t1
20 t3
0

t6
0

t1
20 t3
0

t6
0

t1
20 t3
0

t6
0

t1
20 t3
0

t6
0

t1
20

0.2mM
VPA

1mM
VPA

5mM
VPA

0.5µM
SAHA

2.5µM
SAHA

12.5µM
SAHA

N
um

be
r o

f s
ig

ni
fic

an
t g

en
es

 

Up
Down

Fig. 1  Concentration and time dependence of the transcriptional 
response to HDACi. Histogram showing the number of genes whose 
transcript levels are significantly increased (red) or decreased (green) 
at three time points and three concentrations of VPA or SAHA, as 
indicated (t test, P < 0.05, fold change >1.5).
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genes and multiple genes encoding components of the 
Wnt, Shh and Notch signalling pathways (6, 4 and 3 
respectively).

The lowest concentration of VPA tested (0.2  mM) is 
within the range likely to be achieved in the body flu-
ids of patients taking therapeutic doses of VPA [57]. By 

ANOVA, we identified just 22 genes responding at this 
dose at 30 min and thereafter. Of these, 17 were up- and 
5 down-regulated (Additional files 3, 4). Amongst the 
down-regulated minority was EPC2, a paralogue of the 
HAT component EPC1 (Table 1). Of the 17 up-regulated 
genes, the great majority (at least 15) encode transcription 

(See figure on previous page.)
Fig. 2  Dynamics and ontology of the transcriptional response to HDACi. Significant genes were identified by ANOVA (fold change >1.5, FDR <10 %) 
and clustered by SOTA. The four major clusters represent genes that were up- or down-regulated, either with or without a delay. Minor clusters, 
containing less than 1 % of all genes, are not shown. Each subset of genes was subject to ontological analysis by DAVID. For each significant annota-
tion cluster (enrichment score >2) the top ontological term is shown. For each gene ontology term, count refers to the number of significant genes 
involved in that term, fold enrichment represents the enrichment in the significant gene list, of genes involved in that term relative to background, 
and the P value is a measure of the significance of that enrichment.
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factors and proteins involved in growth control and devel-
opmental signalling. In other words, the ontology closely 
resembles that observed at much higher concentrations.

A novel mass spectrometric approach has been used to 
measure the in  vivo sensitivity of individual HDAC com-
plexes (CoREST, NCoR, NURD, Sin3) to inhibitors, and has 
shown that they differ widely in their sensitivities to VPA, 
with mean Kd values from 0.6 to 13 mM [58]. In view of 
this, one might expect to find different gene sets respond-
ing at different VPA concentrations. Despite a careful anal-
ysis over a 25-fold concentration range, we find no evidence 
that the characteristic gene composition of the transcrip-
tional response to VPA varies with inhibitor concentration.

Early and progressive changes in histone modification 
in response to HDACi
We used Chromatin ImmunoPrecipitation and high-
throughput sequencing (ChIP-seq) to follow changes in 
histone modification after 30, 60 and 120 min treatment 
with 1  mM VPA. We used antisera specific for H3K9ac 
and H4K16ac, both associated with transcription-
ally active genes [27, 28], and the Polycomb-associated 
silencing mark H3K27me3 and its activating counterpart 
H3K27ac [30]. Histone modification levels were analysed 
using probes from 500  bp upstream to 500  bp down-
stream of transcription start sites (TSS).

We assayed acetylation at TSS of the four subsets of 
genes involved in the early transcriptional response, 
namely rapidly up or down and delayed up or down 
(Fig. 2). A striking initial finding was that genes involved 
in the progressive transcriptional response, had high 
basal acetylation levels. This was irrespective of the direc-
tion of transcriptional change adopted in response to 
HDACi (Fig.  4). In contrast, levels of H3K27me3 prior 
to treatment were close to the median for three of the 
four categories of responding genes (Fig.  4). The excep-
tion was genes that were up-regulated after a delay, which 

had relatively high levels of H3K27me3 in untreated 
cells. It is interesting that for this category of genes, lev-
els of acetylation at all three histone lysines tested, were 
lower (though still well above the untreated median) 
than for the other three categories of responding genes 
(Fig.  4). Changes in acetylation following exposure to 
HDACi, were small. Genes that were up-regulated, 
whether immediately or with a delay, showed, on aver-
age, a gradual, progressive increase in H4K16ac (Fig. 5). 
For the same categories of up-regulated genes, H3K9ac 
and H3K27ac increased slightly after 30  min, but then 
remained unchanged for the rest of the time-course. 

Table 1  Genes encoding components of KAT complexes are consistently down-regulated by HDACi

Gene MYST2 PHF17 PHF15 ING5* BRPF3 MYST4 ING3 EPC1 YEATS4 CSRP2BP TAF6L CREBBP

Complex HBO1 MOZ/MORF NuA4 ATAC PCAF p300/CBP

Histone Target H4 H3 H4 / H2A H3/H4 H3/H4 H2A, H2B, 
H3, H4

1mM VPA 0.60 0.61 0.75 0.47 0.50 0.61 0.63 0.43 0.73 0.69 0.76 0.71

5mM VPA 0.52 0.43 0.63 0.50 0.48 0.75 0.55 0.38 0.75 0.61 0.66 0.76

0.5µM SAHA 0.60 0.57 0.61 0.51 0.43 0.70 0.84 0.46 0.74 0.71 0.63 0.77

2.5µM SAHA 0.48 0.48 0.49 0.53 0.44 0.62 0.90 0.36 0.70 0.64 0.75 0.66

12.5µM SAHA 0.45 0.40 0.49 0.48 0.38 0.55 0.63 0.46 0.62 0.60 0.72 0.63

The table shows the fold change between 0 and 120 min of genes encoding KAT complex proteins at the inhibitor concentrations shown. Statistically significant 
changes (ANOVA, fold change >1.5, FDR <10 %) are shaded in green. No KATs were significantly down-regulated by 0.2 mM VPA.

* ING5 is reported to be a member of the HBO1 and MOZ/MORF complexes.
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Down-regulated genes showed no change in H3K9ac or 
H3K27ac across the entire time-course and just a small 
and transient reduction in H4K16ac at 30  min (Fig.  5). 
Thus, changes in histone acetylation at the TSS of per-
sistently responding genes are small, associated almost 
exclusively with up-regulated genes and tend to occur 
soon (30 min) after addition of the inhibitor. 

Unexpectedly, the most dramatic change in histone 
modification in response to HDACi was in levels of 
H3K27me3, a modification put in place by the Poly-
comb silencing complex PRC2 [59]. A strong increase in 
H3K27me3 at TSS was first detected at 60 min and per-
sisted at 120  min (Fig.  6a). This change was detectable 

across all genes (Fig. 6a, “All Probes”), and was independ-
ent of the manner in which transcription was altered by 
HDACi (Fig.  6a). We analysed the genomic distribution 
of the change in H3K27me3 with 1,000 bp rolling window 
probes. The increase in H3K27me3 after 60 min was seen 
only in windows which included TSS and not in regions 
classed as non-TSS or in windows overlapping other 
genomic features (Fig.  6b). All four sets of persistently 
responding genes revealed by SOTA showed increased 
levels of H3K27me3 at t60 and t120, but no change at t30.

The most likely explanation for HDACi-induced 
increase in H3K27me3 specifically at TSS, is that levels 
of catalytically active PRC2 have increased at TSS. This 
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Fig. 5  Changes over time in histone acetylation at the TSS of genes showing specific transcriptional responses to VPA. ChIP-seq was carried out on 
lymphoblastoid cells treated for 0, 30, 60 and 120 min with 1 mM VPA using antibodies to one of three different acetylated histones, as indicated. 
Changes over time are shown for each of the four categories of persistently responding genes (Fig. 2), as indicated. Box plots, configured as in 
Fig. 4, show the distribution of normalised read counts at the TSS of genes that showed significantly altered transcript levels at each time point. TSS 
probes were −500 to +500 bp around each TSS and were quantified by read count quantitation, normalised to the largest datastore.
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in turn could be attributed, for some genes at least, to 
spreading of PRC2 from adjacent, PRC2-rich, regions. 
Examination of genes with blocks of H3K27me3 adjacent 
to the TSS was consistent with this. Figure  6c shows a 
screenshot of the NBPF15 gene: H3K27me3 can be seen 
to spread over the TSS 60 min after addition of HDACi. 
In contrast, the distribution of H3K27ac in the gene body 
shows no sign of spreading (Fig. 6c), in line with the gen-
eral lack of effect of HDACi on acetylation of chromatin 
at and around TSS (Fig. 5). We note that, in the treated 
cell population, the TSS contains both H3K27me3 and 
H3K27ac. This could be due to the existence of separate 
cell populations (i.e. with either methylated or acety-
lated TSS) or to the presence of both modifications on 
the same chromatin fragment. Further experimentation 
using this model system should allow this interesting 
issue to be resolved for specific TSS.

Inhibition of the EZH1/2 methyltransferases modifies the 
transcriptional response to VPA
To explore the possible involvement of EZH2 activity in 
establishing the transcriptional response to HDACi, we 
used UNC1999 [60, 61], an inhibitor of both EZH2 and 
its close homologue EZH1. Inhibition of both enzymes 
is important in view of evidence from mouse knockout 
studies that EZH1 can substitute for EZH2 to main-
tain PRC2 function [32, 62]. We tested transcriptional 
change after treating for 120 min with 1 mM VPA alone, 
3 µM UNC1999 alone and VPA + UNC1999. At 3 µM, 
UNC1999 led to a progressive reduction in global levels 
of H3K27me3 (Fig. 7a) but had no effect on cell viability, 
either alone or in combination with 1  mM VPA (Addi-
tional file  7). It should be noted that the reduction in 
global levels of H3K27me3 was slow, occurring over days. 
Effects observed after only 120 min are likely to be due to 
the inhibition of de novo H3K27 tri-methylation at spe-
cific loci rather than a general reduction in H3K27me3 
levels. UNC1999 on its own had a small transcriptional 
effect after 120 min (32 genes up, 31 down) but had a sig-
nificant effect on the transcriptional response to VPA. 
The numbers of genes up- and down-regulated by VPA 
and UNC1999 are shown in Fig. 7. Of 362 genes down-
regulated by VPA in this experiment, 147 (41  %) were 
UNC1999 sensitive (i.e. their down-regulation was pre-
vented by UNC1999), while 215 (59  %) were UNC1999 
insensitive. These two populations had different ontolo-
gies (Additional file  8). Cytokine and apoptosis-related 
genes were UNC1999 sensitive (EZH2 dependent), while 
genes involved in transcriptional regulation and, impor-
tantly, KAT complex genes, were UNC1999 insensitive 
(EZH2 independent). Ninety-three genes were down-
regulated only by VPA plus UNC, indicating that their 
ability to respond to VPA is normally suppressed by 

PRC2-mediated H3K27 methylation. Of 643 genes up-
regulated by VPA in this experiment, 341 (53  %) were 
UNC1999 sensitive (EZH2 dependent) and 302 (47  %) 
were UNC1999 insensitive (EZH2 independent). As with 
down-regulated genes, the ontologies of the two groups 
differed, with transcription related terms again con-
fined to the UNC1999 insensitive group. Developmental 
terms were found in both groups, but were much more 
prominent amongst UNC1999 sensitive (EZH2 depend-
ent) genes (Fig. 7b). A relatively small number of genes, 
59, were up-regulated only by VPA plus UNC, indicating 
that their up-regulation by VPA is normally suppressed 
by PRC2.

These results show that ongoing EZH1/2 activity is 
essential for the VPA-induced change in expression of 
some categories of gene. Surprisingly, the results show 
that EZH1/2 can be required for either activation or 
silencing, depending on the genes involved. We used 
ChIP data to ask whether the effects of EZH1/2 inhibi-
tion were influenced by the H3K27 modification sta-
tus prior to treatment, but found little evidence for this. 
Genes whose transcription was changed (up or down) 
by UNC1999 alone had relatively low levels of H3K27ac 
and high levels of H3K27me3, indicating silenced or 
lowly expressed genes (Fig. 7c). Apart from this, all VPA-
responsive genes, irrespective of their EZH1/2 depend-
ence, had levels of H3K27ac above the population median 
and levels of H3K27me3 close to the median (Fig. 7c).

Discussion
Adaptive strategies
We have shown that the transcriptional response that 
develops during the first 2  h of exposure to HDACi 
involves a restricted number of genes, largely within 
specific functional categories. These categories indicate 
a coordinated transcriptional response that allows the 
cell, first, to survive, and then to adapt to life in the pres-
ence of HDACi. A prominent feature of the early HDACi 
response is the universal down-regulation of genes 
encoding KAT complex components. This will mitigate 
the hyperacetylation induced by HDACi, and explains 
both the return to normal levels of acetylation after pro-
longed culture in HDACi (e.g. [63]) and the very early 
finding that histone acetylation levels fell rapidly to below 
pre-treatment levels when HTC cells were released from 
prolonged butyrate inhibition [17].

Other gene sets with characteristic patterns of 
transcriptional change provide additional clues to 
the nature of the adaptive response. The rapidly and 
consistently down-regulated cytokine category was 
particularly enriched in genes involved in growth con-
trol, such as GDF9 and its paralogue GDF15. GDF9 
is necessary for cell cycle progression, mediating 
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Fig. 6  Changes over time in H3K27 tri-methylation at the TSS of genes showing specific transcriptional responses to VPA and at other genomic 
regions. a Levels of H3K27me3, after increasing time in 1 mM VPA, at the TSS of genes involved in the four categories of persistent transcriptional 
response (Fig. 2), as indicated. TSS probes were −500 to +500 bp around each TSS and were quantified by read count, normalised to the largest 
datastore. b Levels of H3K27me3, after increasing time in 1 mM VPA, at different genomic regions. 1,000 bp rolling windows were quantified by read 
count quantitation, normalised to the largest datastore. The distribution of all probes and those overlapping with TSS, not overlapping with TSS or 
overlapping coding sequence are shown. c Screenshot from SeqMonk showing changes in H3K27me3 and H3K27ac at and around the TSS of the 
NBPF15 gene. The positions of the gene and the coding sequence are indicated across the top of the panel. Forward reads are shown in red and 
reverse in blue. The coloured boxes below each data track show the position and value (box height) of each TSS probe.
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Fig. 7  How inhibition of EZH1/2 changes the transcriptional response to VPA. Human lymphoblastoid cells were treated for 2 hours with either 
1mMVPA, 3 µM UNC1999 (an inhibitor of the methyltransferase activity of EZH1/2) or both compounds together. a Western blot showing changes 
in H3K27me3 levels in LCLs treated with 3 µM UNC1999 for the indicated times. b Venn diagrams comparing the response to VPA alone and 
VPA + UNC1999, and identifying genes that are UNC1999 sensitive, UNC1999-insenstive, or whose transcription changes only in the presence of 
UNC1999 (UNC1999-dependent), as indicated. For each treatment, gene expression changes were compared to untreated cells. Significant genes 
were determined by t test (fold change >1.5, P < 0.05). c Pre-treatment levels of H3K27ac and H3K27me3 at the TSS of genes whose transcription 
changes (up or down as specified) in response to VPA and/or UNC1999. Box plots show results for all TSS (All probes, LH side), and for genes respond-
ing to UNC1999 alone (UNC-responsive), VPA only in the absence of UNC1999 (UNC-sensitive), VPA with or without UNC1999 (UNC-insensitive) and 
VPA only in the presence of UNC1999 (UNC-dependent). Box plots are configured as in Fig. 4.
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both the G1-S transition and passage through G2-M 
[56]. GDF9/GDF15 down-regulation may explain the 
slowed growth and G1 and G2M blocks caused by 
HDACi in LCLs (Additional file  1A) and other cell 
types [64]. Slowed growth will protect the cell against 
long-term genome damage caused by replicative stress 
through S-phase and chromosome mis-segregation at 
mitosis.

In order to function and grow (albeit slowly) in the 
presence of HDACi, the cell must establish a new pat-
tern of gene expression supported by a modified epi-
genome. Our results show down-regulation of genes 
potentially involved in determining the lymphoid 
phenotype of the LCL, such as interleukins and alpha 
interferons and up-regulation of genes required for a 
change of phenotype, including homeobox genes and 
components of the Wnt and Notch signalling path-
ways. This change need not involve complete loss of the 
original lymphoid phenotype, or differentiation along 
a pre-defined lineage, and we see no evidence for this. 
Indeed, there are likely to be many different epigenomes 
and transcriptomes that are compatible with survival 
and growth in the presence of HDACi. The changes 
we observe increase the chances of one of these states 
being reached by any single cell. Longer term, cells 
whose modified transcriptomes allow them to cope 
most effectively with the prevailing environment, will 
come to dominate the cell population through normal 
selection processes.

The evolutionary necessity of an adaptive response 
to HDACi
Many HDACi are natural products, usually produced 
by bacteria, and are widely present in the environ-
ments encountered by eukaryotic cells [65, 66]. Short-
chain fatty acids are common products of bacterial 
metabolism and are present at mM concentrations in 
the large intestines of humans and other mammals [67, 
68]. HDACi such as Trichostatin A, Trapoxin and Dep-
sipeptide, are bacterial antimicrobials that kill eukary-
otic micro-organisms (such as Aspergillus) competing 
for the same resources [69]. Killing of competitors and 
predation are common in microbial communities [70]. 
Over vast periods of evolutionary time since their first 
emergence, eukaryotes must have evolved strategies 
to protect themselves, and their uniquely eukaryotic 
chromatin-based epigenetic systems, from HDACi 
secreted by competing prokaryotes. This evolutionary 
background, and the fact that humans and other higher 
eukaryotes continue to be exposed to environmental 
HDACi [68], provides a convincing rationale for the 
existence of the protective response uncovered by our 
experiments.

Histone modifications as determining factors in the 
transcriptional response to HDACi
Our results show that the way in which genes initially 
respond to HDACi is closely associated with their histone 
modification status prior to treatment. Genes that are 
rapidly up- or down-regulated, some of which form part 
of the proposed adaptive response, are marked by high 
levels of H3 and H4 acetylation, even though their tran-
script levels are close to the population mean. Following 
HDACi treatment, despite the rapid increase in histone 
acetylation detected by Western blotting, changes in acet-
ylation at and around TSS were modest at best, and often 
absent. This can be attributed, in part to the initially high 
levels of histone acetylation of HDACi-responsive genes, 
but still indicates that increased histone acetylation is 
not an immediate driver of the transcriptional changes 
we detect. It seems that high levels of histone acetylation 
provide a chromatin context that allows genes to change 
their transcription level (up- or down-) in response to the 
appropriate signals.

Unexpectedly, the most striking change in histone 
modification over the first 120  min of treatment with 
HDACi, was an increase in H3K27me3 at TSS. We 
detected no increase in transcripts encoding PRC2 core 
components, and it seems likely that our findings reflect 
the redistribution of existing PRC2 complexes to TSS 
[71]. The processes by which PRC2 is directed to its tar-
get sites, and by which it is retained there, are complex 
and still incompletely understood [72, 73]. H3K27me3 
is necessary for stable PRC2 binding and maintenance 
of silencing [74]. H3K27 methylation can be blocked by 
pre-existing acetylation of the same residue, and this 
modification is antagonistic to silencing [30, 32]. In view 
of this, it is interesting that we were able to show that 
blocks of H3K27ac extending from the gene body into 
the TSS did not prevent the spreading of H3K27me3 into 
the TSS from enriched upstream regions. Within treated 
populations, the nucleosome at the TSS contained both 
acetylated and/or tri-methylated H3K27. While it is theo-
retically possible that the two different H3 modifications 
are carried on a single nucleosome [75], it is more likely 
that that result reflects a mixed population of cells, with 
some having H3K27me3 on the single TSS nucleosome 
and others H3K27ac. It is clear that VPA does not induce 
any detectable spreading or enhancement of blocks of 
H3K27ac, in line with its modest effects on gene-proxi-
mal histone acetylation in general.

The role of Polycomb mediated gene regulation
Phosphorylation of H3 at serine 28, catalysed by 
MSK1/2, can displace PRC2, presumably by disrupt-
ing binding to the adjacent, methylated residue [76, 
77]. H3S28ph levels have been shown to increase 
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at the promoter regions of a specific subset of genes 
that are transcriptionally activated when quiescent 
3T3 cells are stimulated back into growth [78]. This 
allows Polycomb-silenced genes to be reactivated 
without the need to demethylate H3K27. This find-
ing is relevant to our results in that the antibody to 
H3K27me3 used for these experiments, while highly 
specific for methylated H3K27 in peptide binding 
assays, binds only weakly to peptides that are also 
phosphorylated at K28 [79]. Thus, it is possible that 
the increased, TSS-specific antibody binding that 
occurs after 60  min exposure to HDACi, reflects 
unmasking of pre-existing H3K27me3 by de-phos-
phorylation of H3K27me3S28ph. We cannot discount 
this possibility, but regard it as unlikely, not least 
because the precisely timed increase in H3K27me3 
that we observe occurs at TSS, irrespective of their 
transcriptional status, contrary to the selective phos-
phorylation of H3S28 at active TSS [78]. However, 
the functional outcome will be the same in each case, 
namely enhanced gene silencing through H3K27me3-
mediated binding of PRC2.

Surprisingly, genes that were either up- or down-
regulated over the first 120  min were distinguished 
from one another not by H3/H4 acetylation, which was 
high for both, but by H3K27me3, which was elevated, 
in untreated cells, only for genes up-regulated follow-
ing a delay. Genes that carry a combination of histone 
modifications normally associated with active or silent 
chromatin states were first identified in embryonic cells 
[80, 81]. These “bivalent” genes were shown to corre-
spond largely to genes that were poised to respond to 
developmental signals [80–83]. It may be that HDACi 
selectively activate such poised, bivalent genes. This 
is consistent with our ontology analysis which shows 
enrichment of up-regulated genes in terms relating to 
transcriptional regulation and development. We also 
note that the regulatory effects of PRC2 can be modu-
lated by histone modifications associated with active 
chromatin, such as H3K4me3 [31], raising the possibil-
ity that PRC2 effects might differ depending on levels of 
histone acetylation.

Conclusions
Cells respond to HDACi with a transcription based, 
adaptive response that allows them to survive in the 
presence of the inhibitor. The response includes the 
universal down-regulation of KAT complex com-
ponents, a change that will diminish and eventually 
eliminate protein hyperacetylation caused by HDAC 
inhibition, and the up-regulation of developmental 
regulators that adjust transcription to accommodate 
inhibitor-induced epigenomic changes. Genes whose 

expression is sensitive to HDACi are consistently pre-
marked by high levels of H3 and H4 acetylation. We 
find little evidence that transcriptional changes are 
driven by further increases in histone acetylation at 
gene control regions, but there is a dramatic, across-
the-board increase in H3K27me3 at transcription start 
sites. Inhibition of the methyltransferase EZH1/2 alters 
the transcriptional response, confirming the functional 
involvement of the Polycomb complex PRC2. Collec-
tively, our results support the conclusion that the tran-
scriptional response to HDACi, including activation 
or mobilisation of PRC2, is driven by increased acety-
lation of specific non-histone proteins, with histone 
acetylation providing a chromatin context that allows 
transcriptional change. Given the potential importance 
of the survival response in determining the resist-
ance or sensitivity of cancer cells to therapeutic doses 
of HDACi, the identification of these proteins is a key 
objective.

Methods
Cell culture
The work described here used two long-established 
human lymphoblastoid cell lines (LCL), GM12878 
(Coriell Institute, see [28]) and AH-LCL (produced in-
house in the course of previous work by Rowe and col-
leagues [84]). Lines were maintained at 37 °C, 5 % CO2 
in RPMI 1640 medium, 10 % foetal bovine serum, sup-
plemented with l-glutamine (2  mM) and penicillin/
streptomycin (all reagents from Life Technologies). A 
stock solution of sodium valproate (VPA, Sigma) was 
prepared at 1 M in water and stocks of suberoylanilide 
hydroxamic acid (SAHA, Sigma) were prepared at 0.5, 
2.5 and 12.5 in DMSO. Cells were treated at 0.2, 1 and 
5  mM VPA and 0.5, 2.5 and 12.5  µM SAHA such that 
DMSO concentration in SAHA-treated cells was always 
0.1  %. A stock solution of UNC1999 was prepared 
at 3  mM in DMSO and cells were treated with 3  µM 
UNC1999.

Antibodies
Rabbit polyclonal antisera to H4K16ac (R251), H3K9ac 
(R607) and H3K4me3 (R612) were raised in-house 
by immunisation with synthetic peptides conjugated 
to ovalbumin as previously described [85]. The anti-
body to H3K27me3 was from Millipore (07-449) and to 
H3K27ac from Abcam (ab4729). Antibody specificities 
was assayed by inhibition ELISA and checked by West-
ern blotting.

Western blotting
Histones were extracted from ES cells by acid 
extraction and analysed by electrophoresis in 15  % 
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SDS–polyacrylamide gels and western blotting as pre-
viously described [4]. Protein loading was confirmed by 
Ponceau S staining before proteins were probed with 
appropriate primary antibodies. Primary antibody bind-
ing was detected by fluorescent-tagged anti-rabbit IgG 
secondary antibody (Rockland) and detected by scanning 
(Odyssey system; LI-COR, Cambridge, UK).

FACS cell cycle analysis
Treated and control cells were washed in PBS and fixed 
in ice cold 90  % ethanol at −20  °C for at least 30  min. 
Fixed cells were washed in PBS and resuspended in 
propidium iodide staining buffer [PBS with 20  µg/ml 
propidium iodide (Sigma), 100  µg/ml RNase A (Life 
Technologies), 0.1  % NP40, 5  µg/ml tri-sodium citrate 
(Sigma), 5  % foetal bovine serum (Life Technologies) 
and 0.02  % sodium azide (Sigma)]. Cells were analysed 
on a Cyan ADP Flow Cytometer using Summit soft-
ware v4.3 (Beckman Coulter), gating for forward and 
side scatter and pulse width to isolate single cells. Apop-
totic populations in untreated or treated LCLs were 
determined using the Annexin V Apoptosis Detection 
Kit—APC (eBioscience) according to the manufacturer’s 
instructions.

Microarray expression analysis
All microarray experiments were carried out in bio-
logical triplicates. All microarray reagents are from 
Roche Nimblegen unless otherwise stated. Cells were 
harvested by centrifugation and RNA was extracted 
and purified using the RNeasy kit with DNase diges-
tion (Qiagen) according to the manufacturer’s instruc-
tions. Double stranded cDNA was synthesised using the 
cDNA Synthesis System, including RNase I and Protein-
ase K treatment followed by DNA clean up using the 
PCR purification kit (Qiagen). Samples were labelled 
with cy3 using a Nimblegen One-Colour Labeling 
Kit, mixed with alignment oligos and sample tracking 
control oligos (Nimblegen Hybridisation and Sample 
Tracking Control Kits) and hybridised to a 12 ×  135k 
HD2 expression array (Roche Nimblegen, containing 3 
probes per sequence for 44,049 human sequences) and 
scanned on a Nimblegen MS200 Microarray scanner. 
Data were extracted using DEVA (Roche Nimblegen) 
and normalised by robust multichip average in R. Direct 
comparisons of t0 and individual time points was carried 
out using t Tests. Genes with a P value smaller than 0.05 
and FC larger than 1.5 have been selected for further 
analysis including functional annotation and network 
construction. The ongoing transcriptional response 
was identified using ANOVA in TMEV [86]. The P val-
ues derived from ANOVA analysis were corrected for 

multiple testing by performing the Benjamini–Hoch-
berg correction in R. Differentially expressed genes were 
selected using a threshold of false discovery rate (FDR) 
smaller than 10 % with fold change greater than 1.5. In 
order to group genes with similar expression patterns 
into clusters, a SOTA analysis was performed using 
TMEV [86]. Each cluster that was characterised by 
highly co-regulated genes was then functionally anno-
tated for GO terms using the web based tool DAVID 
[55]. Co-regulation networks were constructed using 
ARACNE and visualised in Cytoscape with a forced 
directed layout. The microarray data from this publica-
tion have been submitted to the GEO database (http://
www.ncbi.nlm.nih.gov/geo/) and assigned the identifier 
GSE65297.

Chromatin immunoprecipitation: sequencing
Immunoprecipitation of native chromatin was per-
formed based on the method described previously [87]. 
Briefly, cells were lysed to release nuclei prior to mic-
rococcal nuclease digestion. The amount of micrococ-
cal nuclease added and digestion time were adjusted to 
obtain a mix of mono- and short oligo-nucleosomes, 
optimal for immunoprecipitation. Chromatin was pre-
cleared by incubation with protein A Sepharose beads 
and incubated overnight with antibodies to H4K16ac, 
H3K9ac, H3K27ac and H3K27me3. Antibody-bound 
material was isolated on Protein A-Sepharose beads 
(Invitrogen, UK) and DNA from antibody-bound 
and input chromatin was purified by PCR purifica-
tion kit (Qiagen). Sequencing libraries were prepared 
from 100 ng DNA per sample using the KAPA Library 
preparation kit for Illumina (Anachem). Samples were 
barcoded using the system described by Bronner et al. 
[88]. Sequencing was carried out at the West Midlands 
Regional Genetics Laboratory. Pooled libraries were 
clustered using a ‘cBot’ cluster generation system at 
a final concentration of 13  pM, followed by sequenc-
ing on a HiSeq 2500, in ‘rapid run’, paired-end mode 
(2 ×  51  bp). FASTQ files were simultaneously gener-
ated and de-multiplexed using the Illumina ‘HiSeq 
Analysis software’ v0.9 followed by alignment using 
Bowtie2 [89]. Bowtie2 was run using the default 
parameters for ‘very-sensitive-local’ alignment mode. 
Crucially, this means the ‘best alignment’ is reported 
for every read that can be mapped; if there are two 
alignments that are tied, then one is randomly cho-
sen. The output from Bowtie2 was converted to bam 
files and sorted using Samtools v0.1.19. ChIP-seq data 
was analysed using SeqMonk (Babraham Institute, 
http://www.bioinformatics.babraham.ac.uk/projects/
seqmonk/).

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/
http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/
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